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Executive Summary 
 

Introduction 

The goal of the federal program supporting this project is to provide for commercial 
opportunities to develop and apply remote sensing technologies in the transportation industry. In 
support of this goal, this project developed a set of tools to for sensing of traffic from airborne 
imagery. The intent was to develop these tools to the point of demonstrating their practicality and 
utility in real-world situations. 

Specifically, the project goal was to produce: (1) a completed software tool, called TRAVIS 
(Tracking and Registration of Airborne Video Image Sequences), which enhances the ability to 
collect macroscopic traffic flow data (speeds, densities, flows, etc.) and microscopic data 
(individual vehicle trajectories); (2) a set of methods to integrate ground-based and airborne 
sensor data into more accurate and more precise estimates of traffic speeds and densities and 
vehicle origin-destination behavior; and, (3) a set of methods that can be used to route and 
schedule airborne sensors to survey the road network and to detect and analyze traffic 
congestion, allowing the new capability for agencies to plan for traffic data collection using 
airborne sensors. 

In producing these tools, one of the critical elements in the program was to establish their 
viability using practical examples. Hence, for each of these products, a formal and practical 
demonstration of their value was planned and executed: TRAVIS in Tucson and Tempe, 
Arizona; data integration methods in Phoenix, Arizona; and routing and scheduling of airborne 
sensors in Beaverton, Oregon. Through this development and demonstration, the project has met 
the desired goal of the federal program. More specific details of the project, and its execution, 
are described briefly in this executive summary, and in the full report. 
 

Scope and Technical Objectives  
 
Within the goals given above, the objectives of this project were to investigate the 

enhancement of current data sources with data from new, commercially- or otherwise publicly-
available data from remote sensors for better monitoring of transportation infrastructure. In order 
to achieve such improvements, we undertook the development of methods and tools for data 
collection, analysis, and data fusion, and the validation of those methods and tools, through this 
project. 
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This project built on a wide variety of previous research by the lead investigators to design a 
transportation network monitoring program that would enhance traditional data sources with data 
from new remote sources such as cell-phone signals, aerial images and video, and vehicle-based 
GPS signals when available. The areas of research and development in this project included: 

• Enhancing infrastructure monitoring and management with airborne imagery.  
This activity has expanded previous work in several areas: 

(1) fusing airborne and other remotely sensed data with ground-based but location-specific 
traffic sensor data, to improve monitoring of the transportation network;  

(2) using the fused data for better traffic prediction, infrastructure use and condition 
information, and transportation planning;  

(3) furthering the use of airborne surveillance during emergencies, major incidents, 
evacuations and roadway construction activities; and 

(4) with collaborators from the DLR, enhancing methods for special event traffic 
management (e.g., Super Bowl, World Cup Soccer) using airborne imagery and data. 

• Developing and enhancing “enabling” technologies for airborne data collection and 
model calibration.  
A new imaging platform and image processing tools were developed in a proof-of-concept 
phase. There are still a few technical concepts that deserve further attention: 

(1) enhancing the recently developed prototype software at the UA to track individual 
vehicles from video sequences, and extract traffic data that is not otherwise available; and, 

(2) conducting statistical evaluation of remote measurements, such as error rates, frequency 
of type 1 and type 2 errors, and measurement noise statistics. 

 

Technical Approach and Literature Review 
 
Previous research within the National Consortium on Remote Sensing in Transportation – 

Flows (NCRST-F) has shown that location-based sensor data can be supplemented, or even in 
some cases replaced, by cost-effective use of remote sensing tools such as airborne and satellite 
imagery. To achieve these improvements, however, it is necessary to develop methods and tools 
to exploit the remotely sensed data. 

  
The project team has developed prototype software to extract individual vehicle trajectories 

from aerial video. This software, called TRAVIS, can be used with aerial video to identify 
individual vehicles and their movement across consecutive images. By knowing the pixel 
coordinates and the approximate scale of the image, vehicle trajectories (in distance and time) 
can easily be determined. An underlying goal within this program was to continue refinements of 
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this software, specifically to make it viable as a software tool on the Windows platform, and, to 
make the software more useful, to refine many of the vehicle detection and tracking tools in the 
software. We have also shown (in other parts of this project) that even partial trajectories taken 
from TRAVIS can be used in real time to do short-term forecasts of traffic conditions. 

 
Ultimately, the completion of TRAVIS greatly expands the usefulness of airborne traffic 

data, and the utility of collecting both ground-based and remote sensors. Specifically for 
remotely sensed data, the completed TRAVIS software allows more traffic information to be 
extracted more quickly and at lower cost, and can now generate “products” that will be useful for 
transportation management and infrastructure planning. 

 

TRAVIS and its Enhancements 

TRAVIS Features 
 

In the course of the activities under NCRST-F, the UA developed software, called TRAVIS 
(for Tracking and Registration of Airborne Video Image Sequences), which allows for the 
registration of aerial video and the tracking of individual vehicle movements within that video. 
The primary activity of TRAVIS involves the video image processing and trajectory processing. 
The process of data collection and processing in TRAVIS is depicted in Figure ES-1. The 
process begins with data collection over a roadway or traffic facility of interest. Once collected 
the TRAVIS software registers the video to a single image, identifies interesting features 
(vehicles) in the image sequence, and tracks these vehicles through the sequence. Once these 
pixel coordinates are known, these pixels can then be converted into “ground coordinates”, 
giving specific locations and times of vehicle locations. 
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Figure ES-2: Process of Traffic Data Collection and Analysis in TRAVIS [3] 
 

Scope of TRAVIS Enhancements 

Several major enhancements of TRAVIS were enabled by this project: 

• We enhanced this software with a new graphical user interface (GUI) which may be more 
flexible for input and operator control of TRAVIS. This includes: (1) a feature for manual 
identification of vehicles to be tracked in a set of imagery; (2) a window to specify 
parameters for the algorithms that detect and track vehicles in the imagery; and, (3) a help 
feature to assist users with the software. In addition to modifying the interface in Unix (the 
native platform for TRAVIS), we also made a Windows™ version of the code. 

• Second, we have developed effective techniques of applying a “road mask” (i.e., defining the 
actual road boundaries within an image) to speed up the image processing. This mask is 
generated by noting the location of tracked features across a set of images. We then 
determine the most prominent direction of motion between these features, and identify the 
minimum and maximum of these features. Based on an estimated lane width, the road mask 
is placed outside the minimum and maximum lane locations. From this method, the TRAVIS 
software can focus on identifying and tracking vehicles in a specific “area of interest” (i.e., 
within the road boundaries), and the computational burden associated with the image 
processing is significantly reduced. 

• Third, the older version of the TRAVIS software was effective at identifying only 60-80% of 
vehicles in an image. While this might be acceptable for some applications, it is clearly not 
sufficient if detailed vehicle trajectories are desired. We have developed more effective 
thresholds for the vehicle identification and tracking algorithms. These algorithms allow 
darker vehicles (which might otherwise blend with the pavement color), and also carefully 

Data 
Collection

Video 
Image 

Processing

Trajectory 
Processing

Application 
Post-

Processing

Raw Video Vehicle in 
Image

Vehicle 
Position 

and Time

Registration

Vehicle identification

Vehicle tracking

Scaling

Road mask

Data 
Collection

Video 
Image 

Processing

Trajectory 
Processing

Application 
Post-

Processing

Raw VideoRaw Video Vehicle in 
Image

Vehicle in 
Image

Vehicle 
Position 

and Time

Vehicle 
Position 

and Time

Registration

Vehicle identification

Vehicle tracking

Registration

Vehicle identification

Vehicle tracking

Scaling

Road mask

Scaling

Road mask



5 
 

filter for noise in the imagery, to obtain identification and tracking rates of over 90%. These 
methods have been implemented without increasing the number or rate of incorrectly 
tracking other features. 

• Fourth, a “dynamic” vehicle identification and tracking feature has been added to TRAVIS. 
This automatically detects new vehicles as they enter the image, and as the helicopter moves 
between different geographic areas. A single point of reference is used, but the dimensions of 
motion are continually updated to allow continuous tracking in the x- and y-directions. This 
feature means that vehicle trajectory processing can occur automatically across much longer 
video sequences. This can be very useful across long segments of freeways and arterials. 

• Finally, we also experimented with software solution that allows us to register the helicopter 
imagery with existing geo-referenced imagery. That is, with satellite or ortho-rectified 
airborne imagery, we have shown that we can match this geo-referenced imagery to the 
helicopter imagery. This allows us to translate points in the vehicle trajectory into true 
ground coordinates. While the prototype has been developed in this project, it has not yet 
been integrated into the TRAVIS software. Work in this area is ongoing in a separate project, 
with the intent of finalizing its integration into TRAVIS in 2013. 

With the completion of these enhancements, TRAVIS has become a viable tool for traffic 
agencies and transportation planners and engineers to analyze airborne imagery. The software 
now can output vehicle coordinates and trajectories over extended video image sequences. In 
turn, these data can then be used for detecting congestion, understanding driver behavior through 
vehicle interactions, and creating other data sources to support the calibration and validation of 
traffic simulation models. 
 

Sensor Fusion of Airborne with In-ground Sensor Data 
Another major task of the project was to develop methods to fuse data from airborne sensors 

with ground data.  The initial focus was on freeway data. The traffic system is a highly dynamic 
and complex nonlinear system, even for a non-controlled freeway stretch.  Traditionally, the data 
used for freeway traffic state estimation are collected through limited number of ground sensors 
located at some specific positions along the freeway stretch.  This type of data has their intrinsic 
noise which would deteriorate the estimated results.  In this research we focus on the exploration 
of how to utilize the high accuracy imagery for a freeway stretch collected by a surveillance 
helicopter to enhance traffic state estimation. 
 

In this research we focus on the freeway traffic state estimation problem, regarding both 
macroscopic and mesoscopic levels, using data collected by both ground sensors and remote 
sensors. For our purposes, the evolution of a freeway traffic system is continuous in time and 
space, but researchers have found it very helpful to discretize it into segments and into discrete 
time. Matching the vehicles in a series of images would yield partial trajectories or sparse points 
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along their trajectories. Optimally filling the gaps between these measurements is the objective 
of our mesoscopic estimator. [By mesoscopic, we mean that we can capture macroscopic 
properties such as speed, density, and flow, but without losing the information from individual 
vehicle trajectories.] 

 
In the mesoscopic level defined in our research we focus on the temporal-spatial relationship 

for each individual vehicle while all microscopic behaviors like lane changing are neglected.  
From this view one only cares about at each time step where the vehicle is located in the freeway 
stretch. We have modeled the vehicle position as a state estimation problem, integrating the 
ground-based measures of vehicle location and speed with the actual vehicle locations observed 
sporadically by an airborne platform. These measures can be integrated using a Kalman Filter 
(KF), a common method for traffic state estimation. The parameters of the Kalman Filter are 
determined using least squares estimation.  

 
An experimental design was generated, using vehicle trajectory data from the traffic 

simulation tool VISSIM.  The estimation algorithm was realized in MATLAB and the least-
squares model in IBM-ILOG OPL software. We find that the performance of the state estimation 
method is good in general, although it is of course sensitive to the time increment in the state 
estimation and to the spatial resolution of the vehicle positions. 

 

Observation Logistics for Airborne Vehicles 
 

A separate research initiative within the scope of this program dealt with logistics of the 
airborne vehicles (AV), such as helicopters, airplanes or unmanned aerial vehicles (UAVs), 
operating cameras to remotely monitor traffic. In particular, logistics problems were defined for 
two cases: (1) when the fleet of AVs has the capacity to monitor all required locations to be 
observed and the objective is to minimize the cost of monitoring the locations; and, (2) when the 
fleet has more points to monitor than it is capable of monitoring, in which case the objective 
considered was to maximize the number of observation locations. 

 
These problems were formulated as optimization models. Their solution complexity was 

evaluated and heuristic solution approaches were studied. In general, these problems are variants 
of existing vehicle routing problems, which are notoriously complicated and require heuristics 
for their solution. 

 
In this context, a simple case study was addressed to demonstrate the framework for solving 

these logistics problems. A prototypical version of the software, named SIM-AIR, was 
implemented to simulate and visualize the routing/scheduling of a fleet of AVs for the case study 
network. The research team was fortunate to have a small network preliminarily developed by 
team member Yi-Chang Chiu and simulated using DynusT, a traffic simulation software 
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developed at the University of Arizona. The network was for traffic flow for Beaverton, Oregon. 
After the traffic simulation was run, traffic congestion times and locations were obtained, where 
congestion was defined using traffic density for each given roadway segment. Then, based on the 
locations and times of congestion, the logistics of the helicopter routing were determined, using a 
routing heuristic implemented in Google Earth. 
 

Potential Future Applications 

The project has also sought to solve practical problems for the industry, in the sense that 
these products in turn could feed future applications. This has been achieved through feedback 
from the Technical Advisory Panel for the project, which was sought both through a kickoff 
meeting with the panel (held April 27, 2010) and in soliciting feedback from panel members 
(electronically) on the value of airborne data products (conducted in summer 2011). The 
feedback from the technical advisory group was that the airborne traffic data would have value, 
inasmuch as we are able to capture extended sequences (5-10 min) over reasonable lengths of 
roadway (at least 0.5-mile) in the imagery field of view. From the view of our technical advisory 
panel, such imagery allows for more sufficient traffic data to be of use for: (1) microscopic 
traffic simulation modeling; (2) for understanding patterns of traffic congestion over larger 
geographic areas where aircraft may be able to travel quickly; and (3) estimating traffic states 
(levels of congestion) on specific facilities, when integrated with other ground-collected traffic 
data. 
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Introduction 

The goal of the federal program supporting this project is to provide for commercial 
opportunities to develop and apply remote sensing technologies in the transportation industry. In 
support of this goal, this project developed a set of tools to for sensing of traffic from airborne 
imagery. The intent was to develop these tools to the point of demonstrating their practicality and 
utility in real-world situations. 

Specifically, the project goal was to produce: (1) a completed software tool, called TRAVIS 
(Tracking and Registration of Airborne Video Image Sequences), which enhances the ability to 
collect macroscopic traffic flow data (speeds, densities, flows, etc.) and microscopic data 
(individual vehicle trajectories); (2) a set of methods to integrate ground-based and airborne 
sensor data into more accurate and more precise estimates of traffic speeds and densities and 
vehicle origin-destination behavior; and, (3) a set of methods that can be used to route and 
schedule airborne sensors to survey the road network and to detect and analyze traffic 
congestion, allowing the new capability for agencies to plan for traffic data collection using 
airborne sensors. 

In producing these tools, one of the critical elements in the program was to establish their 
viability using practical examples. Hence, for each of these products, a formal and practical 
demonstration of their value was planned and executed: TRAVIS in Tucson and Tempe, 
Arizona; data integration methods in Phoenix, Arizona; and routing and scheduling of airborne 
sensors in Beaverton, Oregon. Through this development and demonstration, the project has met 
the desired goal of the federal program. More specific details of the project, and its execution, 
are described in this full report. 

Scope and Technical Objectives  
 
The objectives of this project were to investigate the enhancement of current data sources 

with data from new, commercially- or otherwise publicly-available data from remote sensors for 
better monitoring of transportation infrastructure. Current data sources to monitor traffic and its 
associated infrastructure include census data, manually collected infrastructure maintenance data, 
vehicle detector data, signage, traffic controls, incident reports and other information commonly 
used by transportation planners and managers. While these data are useful, they can be 
supplemented by a wide variety of data from new remote sensors, such as cell-phone signals, 
aerial images and videos, and vehicle-based GPS signals when available. Such data can 
significantly enhance our understanding of infrastructure condition and the traffic patterns that 
lead to congestion on that infrastructure. 
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In order to achieve such improvements, we undertook the development of methods and tools 
for data collection, analysis, and data fusion, and the validation of those methods and tools, 
through this project. 

 
This work builds on preliminary research conducted as part of the National Consortium on 

Remote Sensing in Transportation – Flows (NCRST-F) between 2000 and 2004. Both lead 
investigators on this project participated directly in this consortium. This prior research 
demonstrated that remote sensing and data fusion methods are viable means of collecting both 
aggregate traffic measures (delay, density, flow, speed, etc.) as well as individual vehicle 
trajectories (see references [1-12]). Both satellite and airborne sensing platforms were shown to 
be useful; the particular airborne platforms have included airplanes, helicopters, and even 
Unmanned Aerial Vehicles (UAVs). 

 
Similar research has integrated traffic flow data from airborne imagery into formal data 

collection programs, where the data from the imagery is fused with ground detector data to 
enhance the estimates of traffic flows. The Ohio State University, as part of the NCRST-F, has 
effectively shown the value of satellite imagery in collecting traffic flow data with no fixed 
ground-based data collection equipment (i.e., loop detectors or temporary tube counters). Also, 
Skycomp, Inc., an independent commercial company, has also shown that traffic data, such as 
queue lengths on arterials and densities on freeways, can be collected from aircraft and fused 
with ground sensor data to estimate the level of service on these roadways. 

 
The University of Arizona (UA) and the Arizona State University (ASU), through the 

research conducted with the NCRST-F, has also shown that traffic data can be enhanced through 
real-time data from airborne imagery. This can include traffic counts and queue estimates at 
intersections, densities on freeways, and even vehicle speed estimates. Additional research 
conducted at the Advanced Transportation and Logistics Algorithms and Systems (ATLAS) 
Center/Laboratory at UA/ASU is investigating the value of airborne sensor data when ground-
based sensor data are not available or difficult to interpret, especially during a major incident or 
during major evacuations. 

 
This project built on this preliminary research to design a formal transportation network 

monitoring program that would enhance traditional data sources with data from new remote 
sources such as cell-phone signals, aerial images and video, and vehicle-based GPS signals when 
available. The areas of research and development in the proposed project include: 
 
• Enhancing infrastructure monitoring and management with airborne imagery.  
 

In the NCRST-F and ATLAS Center research, a helicopter-based platform was developed 
that can collect video and still imagery, and process the imagery in near real time. Outputs 
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from this data processing include queue lengths at intersections and also individual and 
collective vehicle speeds. This activity has been expanded in this program by development 
and enhancement of these capabilities in several areas: 

(1) to fuse the airborne and other remotely sensed data, which has greater spatial coverage, 
with ground-based but location-specific traffic sensor data, to improve monitoring of the 
transportation network;  

(2) to use the fused data for better traffic prediction, infrastructure use and condition 
information, and transportation planning;  

(3) to further the current preliminary research conducted at ATLAS on the use of airborne 
surveillance during emergencies, major incidents, evacuations and roadway construction 
activities; and 

(4) with collaborators from DLR, to enhance methods for special event traffic management 
(e.g., Super Bowl, World Cup Soccer) using airborne imagery and data. 

 
• Developing and enhancing “enabling” technologies for airborne data collection and 

model calibration.  
 

In the NCRST-F, a new imaging platform and image processing tools were developed 
primarily to test their feasibility; this was a proof-of-concept phase. There are still a few 
technical concepts that deserve further attention. With the rapid development of image 
processing techniques, and the “miniaturization” of airborne platforms and sensors, the 
following objectives will be pursued in this project: 

(1) to enhance the recently developed prototype software at the UA to track individual 
vehicles from video sequences, and extract traffic data that is not otherwise available; and, 

(2) to conduct statistical evaluation of remote measurements, such as error rates, frequency of 
type 1 and type 2 errors, and measurement noise statistics. 

 

Technical Approach and Literature Review 
 

Imagery collected from airborne platforms has long been used to document the evolution of 
traffic congestion across extended areas. Since the late 1990’s, many important ideas, new and 
old, on the use of airborne imagery for traffic analysis were investigated and tested in the field by 
two of the co-principal investigators through their membership in NCRST-F. Initially, the 
investigators developed methods to determine traffic performance and mobility measures. Traffic 
characteristics such as speed, density, intersection queue lengths and delays, average annual 
daily traffic, and other level-of-service measures could be determined directly from airborne 
imagery (see references [13-16]). Such spatial traffic measures can be used to determine the level 
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of service of existing infrastructure and the locations of bottlenecks or other locations where 
modernizing and/or expanding roadway infrastructure may be needed. In addition, by using these 
data to calibrate and validate traffic simulation models, one can more directly analyze the 
performance of scenarios where there are changes in roadway infrastructure.  
 

To date, traffic engineers and transportation planners have relied heavily on fixed location-
based sensors to monitor infrastructure performance and traffic congestion. Previous research 
within the NCRST-F has shown that these location-based sensor data can be supplemented, or 
even in some cases replaced, by cost-effective use of remote sensing tools such as airborne and 
satellite imagery. To achieve these improvements, however, it is necessary to develop methods 
and tools to exploit the remotely sensed data. For example, while manual methods may still be 
used to analyze the airborne imagery, there have been considerable gains in computing power 
and image processing techniques over the last ten years. 

 
This technical progress has led to greater interest in using airborne imagery for a variety of 

civilian purposes, including traffic monitoring. As part of the work within the NCRST-F, UA 
researchers developed prototype image processing techniques that could be used to automatically 
determine traffic flow measures from the imagery collected. Researchers at the UA developed 
software to automatically estimate queue lengths at intersections, to estimate vehicle speeds, and 
to estimate vehicle flows and densities. These activities are documented in the reports from the 
NCRST-F as well as peer-reviewed papers in academic journals (e.g., references [1-12]).  

 
The Project Team has also postulated and “architectured” approaches to automatically, in 

real-time, geo-reference images from remote cameras for managing traffic, especially when other 
sensors are absent or disabled. This is done by integrating the imagery with information on the 
height, location, and orientation of the camera. Using these camera data, in combination with a 
geographic representation (latitude-longitude) of the area to be monitored, leads to an explicit 
geo-referencing of the road and vehicle locations. Absolute values of vehicle positions, speeds, 
accelerations, decelerations, and lane changes can be determined. This was proven in 
experiments conducted jointly with the Ohio State University, with a very high-resolution 
inertial measurement unit (IMU), geodetic-quality (high resolution) GPS receivers, and industrial 
high-resolution cameras (see [11]). However, initial experiments using lower-cost and lower-
resolution equipment show some promise in geo-referencing the airborne imagery. 

 
In addition, the project team has developed prototype software to extract individual vehicle 

trajectories from aerial video. From the video, we are able to identify individual vehicles and 
their movement across consecutive images. By knowing the pixel coordinates and the 
approximate scale of the image, vehicle trajectories (in distance and time) can easily be 
determined. We have demonstrated this technique using video from Tucson, Phoenix, and 
Seattle, and have presented these results at technical conferences (see references [1] and [3] as 
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examples). An underlying goal within this proposed program is to continue refinements of this 
software and develop data sets of vehicle trajectories that can be used for calibration and 
validation of microscopic traffic simulation models. Such simulation models can then be used for 
investigating possible roadway infrastructure improvements or changes, to better explain existing 
and likely future traffic conditions. 

 
In the meantime, research collaborators in Europe, namely Prof. Reinhart Kühne and Martin 

Ruhé from the German Aerospace Agency (DLR) in Berlin, have developed an integrated 
platform, referred to as ANTAR (“Airborne Traffic Analyzer”), that can be flown on fixed-wing 
planes and helicopters to acquire and transmit images at 5 frames per second. They have also 
developed associated software, called TrafficFinder, which can process the imagery from 
ANTAR, in real-time, providing traffic parameters such as speeds and densities, and individual 
vehicle trajectories (see [17-19]). ANTAR includes a GPS receiver (with a GPS antenna), an 
inertial measurement unit (IMU), a high-resolution camera, an infrared camera, and a microwave 
transmitter to transmit the acquired images along with the measurements from the GPS and IMU.  
The transmitted images are quickly referenced to a GIS-based street map, and TrafficFinder finds 
the vehicles in the images and obtains speeds and densities. The problem with this system is that 
it is expensive, especially because of the IMU (see Figure 1). An objective of this project was to 
incorporate some approaches of TrafficFinder in the cheaper (i.e., more affordable to traffic 
agencies) system being developed at UA that does not include an IMU but uses software 
approaches to geo-reference images, in order to obtain traffic measures in real-time. 

 
 

Figure 1: ANTAR Imaging System: Camera Platform and Processing Unit (DLR) 
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An example of the types of vehicle trajectories available from this system is shown below in 
Figure 2. In this case, the trajectories are relatively short because of the movement of the 
helicopter during the data collection. Nonetheless, even these partial trajectories can be used in 
real time to do short-term forecasts of traffic conditions. The local speed, density, and flow 
estimates are determined from the individual trajectories; these are then translated through a 
fundamental diagram to determine the movement of shock waves in time and space along the 
roadway. With the shock wave analysis, vehicle movements are then projected into the future, 
accounting for decelerations and accelerations due to the shock waves. Hence, a short-term 
traffic forecast can be created [17-19]. 

 
A team of researchers at the Technical University of Delft has developed a similar system 

[20-23]. Their technique likewise uses digital video collected from a helicopter, with the 
objective of capturing microscopic traffic data. Their method differs from the Arizona approach 
in that it specifically uses an automated technique to generate and match ground control points in 
the imagery, in order to register the imagery. Vehicle detection is done by first generating a 
“background” image (the roadway without vehicle traffic), and vehicles are detected as 
differences from this reference image. Correspondence of vehicles from one image to the next is 
also achieved through a coarse matching algorithm, made easier since the imagery is taken at 
relatively high frequency. Finally, the conversion of vehicle coordinates in the image to vehicle 
coordinates in the real world appears to have been done manually, through specific lateral and 
longitudinal references on the roadway. More recent research by this same team has examined 
finer resolution of the vehicle trajectories through the use of a Kalman filtering technique. 

 

Figure 2: Vehicle Trajectories [19] 
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It is important to note here that most research and practical traffic studies have used fixed-
wing airplanes, helicopters, or blimps as the means to carry personnel and photographic 
equipment, which in itself can be quite expensive. Only a few small studies to date have 
examined the use of smaller, lightweight, and low-cost unmanned aircraft systems (UAS’s, 
formerly unmanned aerial vehicles or UAV’s) to record traffic imagery (see [24],[25]). These 
studies have shown the potential use of UAS’s to collect data for freeway density measurement, 
queue measurement at intersections, origin-destination studies, and even parking lot utilization. 
 

Ultimately, our research results could greatly expand the usefulness of the traffic data that is 
presently being collected from both ground-based and remote sensors. Specifically for remotely 
sensed data, this research will allow more traffic information to be extracted more quickly and at 
lower cost, and will lead to “products” that will be useful for transportation management and 
infrastructure planning. 
 

Primary Project Activities and Feedback 
 

In addition to the work required to generate the “products” described above, several critical 
activities feeding all of the work in this project were required. First, a Technical Advisory Board 
(TAB) was formed to advise the work. Members of the TAB included: 

 Scott Nodes, Arizona Department of Transportation 
 Tom Buick, Independent Consultant 
 Sarath Joshua, Maricopa Association of Governments 
 Aichong Sun, Pima Association of Governments 
 David Gibson, Federal Highway Administration 
 Jim Schoen, Kittelson and Associates 

 
An initial kickoff meeting with the TAB was conducted on April 27, 2010. At this meeting, 

the scope of the project was discussed, and the relevance of the research and development work 
to transportation practice was investigated. A separate set of minutes, given in Appendix A, 
describes the results of that kickoff meeting. Essentially, the primary feedback from the TAB 
included: 

• A review of the project deliverables, to ensure that products would be relevant to the 
larger transportation community. Major deliverables include data sets from the first major 
work activity, software tools, and other project documentation and journal papers. 

• A discussion of special events that could possibly serve as opportunities to collect data on 
atypical traffic patterns. 

• The question of value in measuring emissions from an airborne platform, compared to 
existing ground-based “sniffers”. [Subsequently, this item was dropped from the scope of 
the project.] 



18 
 

• The role of the second main activity in generating a real-time traffic management 
capability. [This topic was not directly investigated in this project.] 

• The possible coordination of traffic data collection with the next regional traffic 
bottleneck study. While this is possible, our emphasis is more on the generation of traffic 
data from imagery, and the automated analysis of imagery to generate traffic data. We 
have less emphasis on producing specific performance measures. 

 
During the work on the products, additional feedback from the TAB was solicited in the 

summer of 2011, primarily centered on the value of different traffic data products that could be 
generated by airborne imagery, as processed by the TRAVIS software and used in traffic 
congestion, state estimation, and traffic condition forecasting. This solicitation was intended to 
provide critical feedback to the team for the initial, baseline capabilities of TRAVIS that might 
make the software viable in practice. In summary, the feedback gave several useful suggestions. 
Succinctly, the TAB felt that airborne traffic data would have value inasmuch as we are able to 
capture extended sequences (5-10 min) over reasonable lengths of roadway (at least 0.5-mile) in 
the imagery field of view. Such imagery allows for more sufficient traffic data to be of use for: 
(1) microscopic traffic simulation modeling; (2) for understanding patterns of traffic congestion 
over larger geographic areas where aircraft may be able to travel quickly; and (3) estimating 
traffic states (levels of congestion) on specific facilities, when integrated with other ground-
collected traffic data. 

 
To this end, the major data collection activity for this project included an AM and a PM 

flight over major roadways in Tucson, Arizona, on January 11, 2011. In each case, about 2 hours 
of video (30 frames per second, 720x480 pixels) were collected using a standard off-the-shelf 
digital camcorder affixed to the skid of a helicopter. Simultaneously, high-resolution imagery (at 
16 megapixels) was also collected, at an approximate frame rate of 4 frames per second, using a 
high-resolution surveillance camera. The major roadways included Speedway Boulevard, a 
critical east-west arterial serving both local and longer-distance traffic in Tucson, and Interstate 
10, a critical east-west freeway through the center of Tucson. These roadways are highlighted in 
the following map.  
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A second data collection activity, including an AM and a PM flight over major roadways in 

Tempe and Chandler, Arizona, was conducted on February 1, 2011. Again, in each case, about 2 
hours of video (30 fps) were collected using a digital camcorder on the skid of a helicopter. 
Simultaneously, high-resolution imagery (at 16 megapixels) was also collected, at 4 fps, using a 
high-resolution surveillance camera. The major roadways included Broadway Boulevard, a 
critical east-west arterial serving Tempe, and Interstate 10 between the Broadway curve and 
Chandler Boulevard, in Tempe and Chandler, Arizona. These roadways are highlighted in the 
following map. 
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Both data collection activities (Jan 11 and Feb 1) were used and analyzed as part of this 
project. The imagery from these data collection activities supported both the enhancements to 
TRAVIS and the estimation of traffic states using both airborne- and ground-based data sources. 

 

Outline of Report  
 

Following this introductory chapter, an extensive discussion of the enhancements to the 
TRAVIS software is provided in the second chapter. This chapter includes the improvements to 
the TRAVIS graphical user interface (GUI) to improve its utility and to make it compatible with 
the Windows operating system. Other enhancements to the algorithms in TRAVIS are also 
discussed in this chapter, including: (1) the application of a road mask to improve the speed of 
the image processing and vehicle identification; (2) the improvement of the vehicle identification 
algorithms to increase the fraction of vehicles correctly identified; (3) the use of dynamic image 
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processing to allow vehicle tracking over extended sequences when the airborne platform is 
moving over larger special areas; and (4) the development of a software algorithm to 
georeference the airborne images to a georeferenced mapping image (e.g., from a satellite or 
airborne mapping platform. 
 

The third chapter discusses the fusion of vehicle trajectory information from airborne 
platforms with other in-ground sensor data to estimate and to project the short-term evolution of 
traffic conditions. Finally, the fourth chapter contains a report on the routing and scheduling of 
airborne platforms to collect traffic information. This includes several formulations and solution 
methods for the routing and scheduling problem, depending on the objective of the airborne data 
collection. These chapters summarize the major extensions and proof of concept for airborne 
data collection methods. 
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TRAVIS and its Enhancements 
 

In the course of the activities under the National Consortium on Remote Sensing of 
Transportation – Flows (NCRST-F), the UA developed software, called TRAVIS (for Tracking 
and Registration of Airborne Video Image Sequences), which allows for the registration of aerial 
video and the tracking of individual vehicle movements within that video. The TRAVIS software 
has been used to track individual vehicles in video segments up to 90 seconds long (~2700 
images at 30 frames per second), when the imagery is centered over a specific location for that 
full duration. In addition, the software also has a post-processing step that uses the image scale or 
other geo-referencing capabilities to produce vehicle trajectories in space and time. The primary 
activity of TRAVIS involves the video image processing and trajectory processing. 
 

TRAVIS Features 
 

The process of data collection and processing in TRAVIS is depicted in Figure 3. The 
process begins with data collection over a roadway or traffic facility of interest. A commercial 
digital video camera, mounted on the aircraft to collect imagery from near nadir, collects the 
imagery in the form of a digital video. Once collected, the raw digital video is then processed 
through TRAVIS. As described in more detail below, the software registers the video to a single 
image, identifies interesting features (vehicles) in the image sequence, and tracks these vehicles 
through the sequence. The results of this step are pixel coordinates of the vehicle in the image. 
Once these coordinates are known, these pixels can then be converted into parameters of 
individual vehicle trajectories. Specifically, the pixel coordinates can be converted into “ground” 
coordinates through various means: an image scale, geo-referencing to existing geographic 
coordinates, or some other method. 

 

Figure 3: Process of Traffic Data Collection and Analysis in TRAVIS [3]  
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In addition, the position of the vehicle relative to the roadway can be determined by using a 
“road mask”, describing the geometry of the roadway within the image. From the roadway mask, 
the direction and the specific lane of a vehicle can be determined. Finally, the vehicle position 
and time (i.e., the trajectory) can then be used for specific traffic applications. Each of the steps 
is described in more detail below. 

Data Collection 
 

The video data collection conducted to date has used a commercial off-the-shelf digital 
camcorder with a pixel resolution of 720x480 pixels, collecting images at 30 frames (images) per 
second. In many of the experiments, we have flown at heights ranging from 500 ft (160 m) to 
2000 ft (650 m) above the surface of the roadway. With a typical focal length on the camcorder, 
this allows us to capture distances on the ground approximately equal to the height; i.e., from 
160 m to 650 m on the ground, in the longer direction of the camcorder’s field of view. 
Generally, this provides a scale ranging from 1-4 pixels per meter (or 0.3-1.3 pixels per foot), or 
commonly around 2 pixels per meter with 360 m in the field of view. Such a scale allows 
sufficient pixels for each vehicle in the image so that the vehicle can be easily identified as a 
“good” feature in the image processing software.  However, it also provides a large enough field 
of view to simultaneously capture numerous vehicles over a roadway segment of interest. More 
details on the data collection platform can be found in [1]. 

Video Image Processing 
 

The input to the video image processing is the sequence of images from the video, which can 
be large. In the video image processing in TRAVIS, the sequence of images in the video (up to 
30 frames per second) are first registered. This step of registration identifies common features 
from one image that reappear in the second image. These are determined as “ground control 
points” in the imagery, using the registration technique in the Kanadi-Lucas-Tomasi algorithm. 
Once the matching is performed, the algorithm performs an affine transformation of the 
coordinates of the second image to the first. This removes any movement of the airborne 
platform (both systematic movement and jitter) from the image sequence, allowing the images to 
appear as if they were taken from a fixed point of view.  

 
In the second step, two adjacent images are then subtracted. This subtraction operation leaves 

only moving features in the image. Once these features are identified, the algorithm then 
identifies the “blobs” in each individual image that generate these moving features. Within each 
image, the highest difference in the red, green, and blue bands in the image is found, and used to 
threshold for “blobs” in the images. Simple dilation is also performed, and the objects are then 
screened using simple heuristics (i.e., using the approximate size and shape of a vehicle). The 
“blobs” are then labeled in each image, using connected component analysis. It is these features 
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that are then tracked throughout the sequence. An example of adjacent images with connected 
components is shown in Figure 4. 

 
The third step of vehicle tracking provides both short- and long-term filtering of these 

“blobs” to eliminate noise in the image, but to retain the “blobs” that represent moving vehicles. 
A short-term tracker is used to detect new moving vehicles in the sequence, and to screen out 
“blobs” that are not actually vehicles. Some small blobs can be seen in Figure 4 that are removed 
by the short-term tracker. At the same time, new vehicles entering the image can also be tracked: 
an example of a new vehicle is that on the lower left side Figure 4. The long-term tracker, on the 
other hand, maintains the coordinates of the vehicle over time. It also allows the tracking of 
vehicles even when they are not detected for short periods of time (e.g., the vehicles stops 
moving for a short time, or it is not detected in a short sequence of images). 

 

The net result from the tracker is a sequence of pixel coordinates of vehicles as they are 
tracked through the image sequence. An example of the video output, in the form of vehicle 
coordinates, is shown in Figure 3. This illustrates the text output, in the form of pixel coordinates 
for each object (the rows) and for each frame in the video sequence (the columns). 

Trajectory Processing 
 

The subsequent processing of the vehicle coordinates is shown as “Trajectory Processing” in 
Figure 3. The objective is to convert the vehicle “location” in pixels to ground coordinates. The 
most direct method is to scale the pixels to ground coordinates, using a simple transform (e.g., a 
linear transform of X meters per pixel). More sophisticated non-linear models can also be used, 
depending on the camera height, focal length and field of view. 
 

 (a) (b) 
Figure 4: Connected Components in Adjacent Images (a) and (b) 
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Scope of TRAVIS Enhancements 
 

Several major shortcomings of TRAVIS could be noted above, and fit in the scope of the 
enhancements enabled by this project: 

• We enhanced this software with a new graphical user interface (GUI) which may be more 
flexible for input and operator control of TRAVIS. In addition to modifying the interface in 
Unix (the native platform for TRAVIS), we also made a Windows™ version of the code. 

• Second, we have developed effective techniques of applying a “road mask” (i.e., defining the 
actual road surface within an image) to speed up the image processing.  If the TRAVIS 
software can focus on “areas of interest” (i.e., on the roads), the computational burden 
associated with the image processing can be reduced. 

• Third, the current software is effective at identifying 60-80 % of vehicles in an image. While 
this might be acceptable for some applications, it is clearly not sufficient if detailed vehicle 
trajectories are desired. So, improvements in vehicle identification are desired. 

• Fourth, a manual identification feature was added to the software, allowing a user to specify 
which vehicles should be tracked. This is useful if new vehicles enter the field of view. 
However, this can only be done once at the beginning of the video sequence, not later as 
other vehicles enter the image, or not if the helicopter moves between different areas that are 
not based on the original location. If the vehicle identification and tracking can be made 
“dynamic,” following the trajectory of  the helicopter and allowing other vehicles to enter the 
field of view, vehicle trajectory processing can occur for much longer video sequences than 
the current 90 second limit. 

 
  



26 
 

GUI Improvements and Windows  
 
One of the major improvements for TRAVIS was to implement the software on a Windows 
platform. The code was successfully ported from Unix, its original platform, to Windows. The 
code retains much of its original structure, using C code for the main program and maintaining a 
Windows-compatible version of TCL/TK for the graphical user interface. 
 

Modes 
 
The basic GUI allows for two modes of operation: Auto Detect, in which the software itself 
identifies vehicles in the image (see Figure 5), and Manual Detect, in which the user may click 
on individual vehicles in an image that he/she wants the software to track (see Figure 6). The 
primary difference between the two is the ability to specifically pinpoint vehicles and their 
characteristics in Manual Detect mode, which is not available in Auto Detect mode. In Figure 6, 
the interface includes buttons for Help, Type (vehicle type), and VOInfo.  
 

 
Figure 5: Basic Interface for Auto Detect Mode 

 



27 
 

 
Figure 6: Basic Interface for Manual Detect Mode. Note the use of the “Help”, “Type”, and 

“VOInfo” buttons on the lower right, in comparison with the Auto Detect Mode. 
 

Manual Detection Options 
 
When the Manual Detection Mode is chosen, the user also has the options of identifying specific 
object characteristics, for each vehicle object identified in the image. These include two factors 
that would appear to have the highest value in determining microscopic vehicle behavior: the 
vehicle type (or vehicle classification), and the traffic lane in which the vehicle is located. These 
are specified using the Type button in the main screen. The information can be queried using the 
VOInfo (vehicle object information) button on the main screen. 
 

Menu Systems 

File 
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The options under the File menu (see Figure 7) include specification of the location of the input 
images (“Open Image”), the location of output images that have been registered and from which 
the vehicles are tracked (“Output Image”), and the key to exit the program. 
 

Figure 7: The File Menu 

Parameters 
 
The parameters for the model are specified under the “Parameters” menu (see Figure 8). These 
include: 
 

• Detect Mode: Within this mode, we can specify either the Auto Detect or Manual Detect 
format. 

• Start Frame: This is the frame number of the first frame in the image sequence. 
• End Frame: This is the frame number of the last frame in the image sequence. 
• Tracking Box Height: This is the height (vertical pixel count) of the box used to indicate a 

vehicle that has been tracked. 
• Tracking Box Width: This is the width (horizontal pixel count) of the box used to indicate 

a vehicle that has been tracked. 
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• Gap: This is the number of successive frames used to identify a vehicle (vs. other noise in 
the image) that should be tracked over the long term. E.g., if a object is tracked for Gap 
frames, then it will be tracked as a long-term object. 

• Scale Dependent Variables: These parameters allow the user to specify characteristics 
associated with the image, but reflecting elements of the vehicle identification and 
tracking process that may depend on the scale of the image. The dialog box for these 
variables, shown in Figure 9, allows the user to adjust the parameters of: 

o The blob size (pixels) 
o Car size (in pixels) for the car length and width; 
o The minimum car length and width (ThreshLength and ThreshWidth); 
o The  threshold grey value, differentiating the vehicle pixel values from the 

underlying pavement; and, 
o The number of images in the sequence to continue tracking a blob, without 

motion, until it is no longer tracked. 
 

 
Figure 8: The Parameters Menu Options 
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Figure 9: Scale-Dependent Parameters for Identification and Tracking 

Run 
 
Running the model is performed through the Run menu. The options within that menu option 
include the path name containing all the input imagery, and then the command to run the 
registration and tracking. This is shown in Figure 10. 
  

 
Figure 10: Options in the Run Menu 
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Output 
 
The Output menu includes options to view the final imagery, including frames around each 
vehicle that is successfully tracked. These images can be viewed individually. This is illustrated 
in Figure 11. Separately, outside the TRAVIS software directly, these images may be 
recombined into a video sequence to illustrate the tracking in normal video. 
 
The other feature is VOInfo, which allows the user to query vehicle object information, with 
manual vehicle detection and tracking. 
 

 
Figure 11: Output Menu Options 

Help 
 
Finally, the TRAVIS software includes a simple help feature that guides the user through various 
menu options and through the steps to run the software. This is illustrated in Figure 12. 
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Figure 12: The Help Screen 
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Road Mask 
 

Our method for creating a road mask from the existing airborne imagery involves several 
steps. We assume that there are sufficient vehicles on the lanes closest to the boundaries of the 
roadway of interest. Vehicle positions are smoothed using Kalman filtering. We then use the 
dominant slope of lines connecting every two vehicles to identify the general direction of the 
road boundary, assuming that the lanes and vehicles run parallel to the edge of the roadway. 
Finally, we create the road mask, according to the positions of vehicles and the general direction 
of the road boundary. More details on each of these steps are given below.. 

Smooth the Vehicle Position Using Kalman Filtering 
 
The output of TRAVIS is a sequence of noisy measurements of vehicle pixel coordinates as 

they are tracked through the image sequence. If desired, Kalman filtering is available to smooth 
the vehicle trajectories. A Kalman filter has two steps: (1) to determine the system state at time 
k+1 based on the system state at time k and the state transition matrix; and, (2) to update the 
system state at time k+1 to reflect the information in the noisy measurement of the system state 
at time k+1. For position, speed, and acceleration, the Kalman filter resembles the following 
[31]: 

Prediction: 

 ( 1| ) ( | )*k k k kS S+ = Φ   (1) 

in which  

 

21 / 2
0 1
0 0 1

τ τ
τ

 
 Φ =  
  

 

 ( ) ( ) ( ) ( )

T

k k k kS x v a =    

In this case, the state of the system is described in terms of a vehicle’s position, speed and 
acceleration. Its update depends on the time step τ, as given in the transition matrix Φ. 

Update/filtering:  

 ( 1| 1) ( 1| ) ( 1) ( 1| )*( * )T
k k k k k k k kS S K Y C S+ + + + += + −   (2) 

[ ]1 0 0TC =  
2/ /

T

kK α β τ γ τ =    

with 

 
31α θ= −      21.5*(1 )*(1 )β θ θ= − −      3(1 )γ θ= −  
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where θ  is the maneuverability index, which determines the noise ratio between the system state 
equation and the observations ( 0 1θ< < ),τ  is the time difference between consecutive 
frames, and ( 1)kY + is the noisy measurement of vehicle pixel coordinates. The parameters α, β, and 

γ are functions of the maneuverability index, reflecting the filtering of the error from the previous 
step for the new system state. More details on this process are given in [31]. 

Estimate the Slope of Roadway 
 

The slope of the roadway is estimated based on the smoothed positions of vehicles tracked by 
the short-term and long-term tracker in TRAVIS. The detailed procedure is as follows: 

Step 1: Calculate the slope of each line connecting every pair of vehicles, as shown in 
Figures 13 and 14. 

Step 2: Divide the vehicle slopes into several groups by grouping close slopes into the same 
group.  

Step 2.1: Sort all the slopes in an ascending order to get a sorted list of slopes, ( )S i , 

i=1,2,…,N (
( 1)

2
n nN −

= , where n is the number of vehicles). 

Step 2.2: Group the slopes based on the following criteria until the last slope ( )S N  is 
grouped: 

  ( ) ( ) 1refS i S j err≤ +  (3) 

where  

1

1

(1)
( )

( ( ) 1)
j
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S
S j
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−

=


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∑
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>

 

( )S i : the ith slope in the sorted list of the slopes. 
( )refS j : the reference slope of the jth group. 
1err : a calibrated error. 
( )GS r : the number of slopes in the rth group (the group size).  

Step 3: Find the group r with the largest group size, GS(r). 

Step 4: Average the slopes in the group r to get the slope of the roadway, roadk . 
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Figure 13: Detected and tracked vehicles in a single image 

 
Figure 14: Lines connecting every two vehicles 
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Calculate the Boundary of the Roadway 
 

The boundary of the roadway is also calculated according to the positions of the tracked 
vehicles, as follows: 

Step 1: Pick a vehicle i randomly and calculate the slope of each line connecting this vehicle 
to all other vehicles k (i,j) , as shown in Figure 15. 

Step 2: Find all vehicles in the same lane as vehicle i based on the following criteria: 

  ( , ) 2roadk i j k err≤ +  and ( , ) 2roadk i j k err≥ −  (4) 
where 

roadk : the estimated slope of the roadway. 
2err : a calibrated error. 

Step 3: If there are more than two vehicles in the same lane, calculate the average y 
coordinate avey , and find the vehicle with y coordinate closest to avey , called vehicle m. 

Step 4: Approximate the center of the lane l using roadk and the position of vehicle m, namely 

mx  and my : 

  m: *( )road ml y k x x y= − +  (5) 

Step 5: Calculate the intercepts of the center of the lane with the edges of the image, minx  and 

maxx , as shown in Figure 16. In the registered frames that we use to illustrate this 
technique, maxx  is equal to 720 (the width of the images), while minx  increases with the 
frame number. This occurs because the helicopter is moving to the right in this example: 
as frames are registered to an initial image, the left edge of the new images moves to the 
right. This is only an example; a similar procedure to determine minx  and maxx  could be 
applied for any movement of the helicopter, in any direction. 

Step 6: If there is no vehicle in the same lane as vehicle i, remove vehicle i. Otherwise, 
remove all the vehicles in the same lane as vehicle i. 

Step 7: Repeat Step 1 ~ Step 6 as long as the number of remaining vehicles is greater than 1. 

Step 8: Calculate the boundary of the roadway in the current frame j, j
miny  and

max

jy , using (6): 

  max

min min max

min max

min(min( ),min( ))

max(max( ),max( ))

j

j

y i i C
y i i C

= −

= +  
(6) 

where mini  and maxi  are arrays which store the intercepts of the lane slopes with the edges 
of the image, minx  and maxx , respectively, and C is a calibrated constant, in which the 
distance from the roadway boundary to the center of the lane closest to the roadway 
boundary and the estimation error are bundled. In this way, the estimated roadway 
boundary is a distance C from the center of the nearest lane that has vehicles that are 
tracked. 
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Figure 15: Lines connecting vehicle i to all other vehicles 

 

 
Figure 16: Edges of the image, minx  and maxx  
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Applying the Road Mask in Vehicle Detection and Tracking 
 

The road mask is applied in vehicle detection and tracking to remove false detections and to 
reduce the computation time. We define a “cycle” of images for which the road mask is 
unchanged; that is, there is insufficient change in the field of view during this “cycle” to warrant 
re-estimating the roadway boundary. The road mask is updated every cycle, and the same road 
mask is used within one cycle. For our purposes, a fixed cycle of 8 frames is used, although this 
could be varied, depending on the speed of the helicopter, which affects the change in the field of 
view. The number of 8 frames in the examples here is chosen to be consistent with previous 
work [26], and matches well with a relatively low helicopter speed of 20-30 mph over an arterial. 
Figure 17 shows the flow chart applying the road mask in vehicle detection and tracking.  
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Figure 17: Flow chart applying the road mask in vehicle detection and tracking 
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The procedure is as follows: 

Step 1: If cycle=1, detect and track vehicles using the short term and long term tracker in the 
whole image (from [26]). If cycle > 1, only detect and track vehicles within the road 
mask. 

Step 2: Use Kalman filtering to smooth the vehicle positions, if necessary. 

Step 3: Calculate the roadway boundaries in every frame based on the positions of tracked 
vehicles. 

Step 4: Repeat Step 1 ~ Step 3 for one cycle (e.g., 8 frames). 

Step 5: Determine the road mask boundaries based on the calculated roadway boundaries in 
the last cycle (e.g., the last 8 frames), using (7).  

  max

min min

max

min( )

max( )

j

j

y y
y y

=

=
          

1, 2,3,...,
1, 2,3,...,

j M
j M

=
=  

(7) 

where M is the number of frames in one cycle, e.g., 8 frames. 

Step 6: Repeat Step 1 ~ Step 5 until all images are processed. 
 

Figure 18 shows an example of the estimated boundaries of the road mask, miny  and maxy . 
 

 
Figure 18: Estimated Boundaries of the Road Mask, miny  and maxy  
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Experimental Results Using the Road Mask 

Experimental Design 
 
A set of images were collected in January 2011, from a helicopter traveling over Speedway 

Boulevard in Tucson, AZ. A sample of 300 frames was selected for testing using the road mask. 
These images were first converted to *.ppm format and then fed into TRAVIS, which registered 
the image sequences to an initial common reference frame, detected vehicles in the images, and 
tracked the vehicles through the image sequence [26]. Two experiments were conducted: one 
applying the road mask in the vehicle detection and tracking process (RMVDT), and the other 
without applying the road mask (VDT). The estimated roadway boundaries were compared with 
the actual roadway boundaries obtained manually from the images. The correct detection and 
tracking rate (CDTR) and the computation time were compared. There are two types of errors we 
can reduce: one is to reduce the number of undetected vehicles, which is referred to a Type I 
error, and the other is to decrease the number of misdetected vehicles, which is referred to a 
Type II error. CDTR is related to a Type II error: reducing the number (or percentage) of 
detected vehicles outside the roadway of interest.  

Results 
 
Figure 19 shows a single vehicle trajectory provided by TRAVIS, and Figure 20 shows the 

estimated vehicle trajectory using Kalman filtering. Because the pixel coordinates of the vehicles 
are integers, the vehicle trajectory fluctuates and the power of the Kalman filter is weakened. 
However, we can still see that several segments of the vehicle trajectory are smoothed using the 
Kalman filter. Overall, however, the Kalman filter has only a very minor effect on this particular 
vehicle trajectory, and on several vehicle trajectories that were processed. 

 
Figure 21 shows the actual roadway boundaries and estimated boundaries of the road mask 

for the set of test images. 64.7% of miny  values were underestimated and 67.6% of maxy  values 
were overestimated; that is, the estimated boundaries of the road mask exceed the actual roadway 
boundaries in about two-thirds of the cycles. Table 1 shows the relative error of estimated 
roadway boundaries. We can see the average and maximum relative error of estimated roadway 
boundaries are less than 2.5% and 7%, respectively. Hence, the accuracy of the estimated 
roadway boundaries is reasonable.  
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Figure 19: A Single Vehicle Trajectory provided by TRAVIS 

 
Figure 20: The Estimated Vehicle Trajectory using Kalman Filtering 
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Figure 21: Actual Roadway Boundaries and Estimated Boundaries of the Road Mask 

 
Table 1: Relative Error of Estimated Roadway Boundary 

 
Error miny  maxy  
Min 0 0 
Max 5.5% 6.5% 

Avg 1.8% 2.1% 
 

Figures 22 and 23 show the detected and tracked vehicles before and after applying the road 
mask, respectively. Using the road mask, the outliers (those objects detected beyond the 
roadway) are removed, and the Type II error is significantly reduced. The Type I error is roughly 
40%. Figures 24 and 25 show the CDTR of RMVDT and VDT in the last frame of each cycle, 
respectively. From these figures, we can see the percentage of falsely detected and tracked 
vehicles is 0% in over 60% of the frames of interest when using the road mask while the similar 
false detection and tracking rate without the road mask is higher than 30% in 55% of the frames 
of interest. Table 2 shows the comparison for the CDTR of RMVDT and VDT. We can see the 
improvement of the CDTR is significant. In addition, the computation time for vehicle detection 
and tracking is reduced by 44%. 
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Figure 22: Detected and Tracked Vehicles in 22nd Frame (Without Road Mask) 

 
 

 
Figure 23: Detected and Tracked Vehicles in 30th Frame (With Road Mask) 
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Figure 24: CDTR of RMVDT in the Last Frame of Each Cycle 

 
Figure 25: CDTR of VDT in the Last Frame of Each Cycle 
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Table 2: Comparison for Correct Detection and Tracking Rate 

 
CDTR RMVDT VDT 
Min 87.5% 30% 
Max 100% 92.9% 
Avg 97.2% 64% 
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Vehicle Identification 
 

Our work has focused on airborne traffic sensors using optical platforms (cameras) to 
record imagery from still images to full-motion video (30 frames per second). The advantage of 
such platforms is that they are mobile, allowing the platform to move adaptively in time and 
space to record traffic flow under any desired conditions. However, these platforms can generate 
a large amount of data in a short amount of time. Manual processing of the imagery is possible, 
but extracting more precise information (e.g., vehicle counts, vehicle classification, vehicle 
speeds, etc.) may require some automated image processing. 

 
In this context, we are exploring the use of airborne camera platforms to record 

individual vehicle trajectories. Data from such trajectories can be used to explore individual 
driver behavior, so-called microscopic traffic models, and as a means to calibrate traffic 
simulation models. But, generating such data automatically has significant challenges. 
Paramount among the image processing challenges are: (1) identifying individual vehicles, and 
(2) tracking individual vehicles over an extended sequence of images. For the traffic applications 
we are discussing, these challenges involve a nearly exhaustive enumeration and tracking of 
vehicles from such imagery. This is because we need all vehicle trajectories to examine the 
behavior of individual vehicles in response to all other vehicles traveling along a given roadway.  

 
The work described here deals with ways of improving the number and percentage of 

vehicles that are correctly identified and tracked in airborne imagery. The following section 
describes other research in this area through a literature review. The third section provides the 
methodology to improve vehicle detection and tracking, and an illustrative example is shown in 
the fourth section. The fifth section provides conclusions on this research. 

Literature Review 
 
Many algorithms have been developed to detect vehicles automatically in aerial images.  

Most of them use either explicit [32-35] or implicit models [36,37] of the vehicles. For example, 
Hinz [32] uses a model-based approach for automatic vehicle detection in high resolution aerial 
images. The primary geometric and radiometric features of cars including their shadows are 
described using a 3D-wireframe representation. The model is matched “top-down” to the image, 
and the support found in the image is evaluated. This approach does not rely on digital maps or 
site models, and it is not constrained to highway scenes. However, when the road is in the 
shadow of adjacent buildings, failures will occur. 

 
In contrast, Moon et al. [33] analyze a simple model-based vehicle detection algorithm. 

An operator for vehicle detection is constructed by combining four elongated edge operators, 
which collect edge responses from the sides of a vehicle. The proposed method relies on a site 
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model, i.e., the positions and structures of buildings and roads, a context model (i.e., areas where 
some activity is more possible within the image), and the vehicle model. 

 
In addition, Kim and Malik [34] introduce a model-based 3-D vehicle detection and 

description algorithm based on a probabilistic line feature grouping, and apply it for vehicle 
tracking. It is fast and flexible. However, while the vehicle detection is reasonable, the ability of 
the algorithm to track vehicles is not satisfying, because problems with occlusions, sharp 
reflections, and changes in image perspective were not addressed. 

 
Zhao and Nevatia [35] describe a car detection system for aerial images by formulating 

the car detection as a 3D object recognition problem. Important features for human detection of 
cars are first found by psychological tests. Then the boundary of the car body, the boundary of 
the front windshield, and the shadow are selected as the primary features. Finally, all features are 
integrated by a Bayesian network model. This method works well on tested examples. However, 
dark-colored cars have a higher misdetection rate and a higher false alarm rate than cars of other 
colors. In addition, other objects with rectangular shape, the foliage of trees, and road markings 
generate false alarms. 

 
Nguyen et al. [36] propose using the AdaBoost (Adaptive Boosting) algorithm for vehicle 

detection in large-scale aerial images. An integral image is used for efficient representation and 
computation of car features. In addition, different types of features, i.e., Haar-like Viola-Jones, 
an orientation histogram, and the local binary pattern are used to generate hypotheses for training 
the detector. This framework does not rely on a priori knowledge of the image. However, the 
interactive training takes about four hours on a standard desktop computer for images of 4000 × 
4000 pixel size.  
 

Tuermer et al. [37] detect vehicles automatically in aerial image sequences using a pre-
processing algorithm to limit the search space for the detector, and using the HoG (Histogram of 
Oriented Gradients) features, to generate a reliable vehicle detector. In addition, the Real 
AdaBoost algorithm is used to select features and their combination. The precision rate, i.e., (true 
positives) divided by (true positives + false positives), is high. However, the recall rate, i.e., (true 
positives) divided by (true positives + false negatives), is only 80%. 
 

Reinartz et al. [38] present a technique of automatic vehicle detection in serial images 
collected by airborne cameras. A difference image is generated between the mapped images and 
the median image. A modified Laplace operator is applied to detect the borders of the objects. 
Using this method on a set of imagery, the detected car fraction is 80%, and more than 20% false 
alarms are generated. 
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Hinz et al. [39] develop a system to detect and track vehicles in low-frame-rate aerial 
image sequences. In the vehicle detection process, a channel differencing approach is first used 
to extract vehicles with significant color features, and then dynamic thresholding is applied in a 
constrained manner only to blob-like features. The extraction process is fast. However, the 
shadow of a vehicle is falsely detected as a vehicle in the example. 
 

Nejadasl et al. [40] incorporate a scaled pixel-space approach into an optical flow method 
for vehicle tracking. The individual car pixels and the complete car region are first tracked 
separately using the gradient-based optical flow method, which is initiated by the scaled pixel-
space approach. A statistical decision making method, based on a rigid-object assumption, is 
then performed for the best result. It is assumed that the displacement vector with the largest 
number of occurrences represents the real car displacement. The experimental results are 
promising. However, some dark cars on a dark background are lost. 
 

As a general summary, existing methods for vehicle detection and tracking suffer from a 
variety of drawbacks. Most notably, they usually require a vehicle model for determining 
vehicle-shaped objects in the image. Shadows, occlusions, and dark vehicles (or vehicles of a 
similar color of the background pavement) represent particular problems in vehicle tracking. 
Finally, correct detection of vehicles is important, but there is a fundamental tradeoff with false 
alarm rates. 

Methodology 
 

Figure 26 shows a flow chart explaining the vehicle detection and tracking process, based 
on the previous work by other researchers at the University of Arizona [26,41]. 
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Difference the images

Threshold the differenced image

Short-term tracker

Long-term tracker

Dilate the thresholded image

Label the connected components
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blobs

Vehicle 
detection

Vehicle 
tracking

 
 

FIGURE 26  Vehicle detection and tracking process in previous work [26,41]. 
 

The procedure is as follows: 

Step 1: Detect the blobs representing vehicles in the registered image. 

Step 1.1: Take the difference between the current image i with the image i-gap (gap is a 
calibrated integer). 

diff(i,j)=max(abs(fy_r(i,j)-ref_r(i,j)),abs(fy_g(i,j)-ref_g(i,j)),abs(fy_b(i,j)-ref_b(i,j)))  

  
0                   if  diff(i,j)<thresh_diff

diff_img(i,j)=
diff(i,j)         o.w.



   

(8) 

where 
fy_r(i,j) , fy_g(i,j) and fy_b(i,j) represent the red, green and blue intensities in the current 

image i, respectively. 
ref_r(i,j) , ref_g(i,j)and ref_b(i,j)  represent the red, green and blue intensities in the image i-

gap, respectively. 
diff(i,j)  represents the difference of the two images in pixel (i,j). 
diff_img(i,j) represents the intensity in pixel (i,j) in the differenced image. 
thresh_diff represents the calibrated threshold for the differenced image. 

 
Step 1.2: Threshold the differenced image using equation (9): 
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255  thresh1>=threshold_value OR thresh2>=threshold_value
thresh(i,j)=

0      o.w.




      (9)     

where 
thresh1/thresh2 represents a local average in a horizontal/vertical window centered at pixel 

(i,j) in the differenced image.  
threshold_value represents a calibrated threshold. 

Step 1.3: Dilate the thresholded image. 

Step 1.4: Do connected component labeling to give a unique label for each blob. 

Step 1.5: Screen out the non-vehicle and stationary blobs based on the blob size and the 
movement of the blobs in x and y directions in 14 frames. The number of 14 frames matches well 
with a relatively low airborne platform speeds of 20-30 mph over an arterial and the frame rate 
of 30 frames/second. 

Step 2: Track the vehicle blobs using a short-term and long-term trackers. The short-term tracker 
is used to detect new moving vehicles and screen out non-vehicle blobs. The long-term tracker is 
used to maintain the vehicle coordinates over time and track vehicles even when they are not 
detected for short periods of time.  
 

For more details on each of these steps, please refer to [26,41]. The proposed framework 
involves two steps as shown in Figure 27: first, estimate the initial road mask based on the 
vehicle detection and tracking technique in [26,41] using the first n frames; and, second, detect 
and track vehicles within the road mask using the proposed technique starting from (n+1)th 
frame, and update the road mask every cycle, i.e., 8 frames. More details on estimating the road 
mask are given in [42]. The reference frame for registration is the initial frame of the image 
sequence, and the vehicles detected and tracked in step 1 are not inherited in step 2. More details 
on the proposed technique are given in the following sections. 
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(b) 

FIGURE 27 Proposed vehicle detection and tracking process: (a) estimate the initial road 
mask based on the vehicle detection and tracking technique in [26,41] and (b) detect and 
track vehicles within the road mask using the proposed technique. 

 

Difference the Images 
 
A lower threshold, thresh_diff  (=15), is used to determine whether a pixel is a vehicle pixel or 
not in the differenced image, compared to thresh_diff (=25) in the previous work. In this way, 
the vehicle pixels with low contrast to the roadway may still remain in the differenced image. 
 

Threshold the Differenced Image 
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We assume that there are only red/blue vehicles shown as red/blue on the roadway in the image. 
Take the red vehicles for example. Then, we seek to determine whether it is a red pixel or not 
based on the intensity difference between the red and the green/blue, using equation (10): 

255  fy_r(i, j)>fy_g(i, j)+thresh_r OR fy_r(i, j)>fy_b(i, j)+ thresh_r
thresh(i,j)=

0      o.w.




  (10) 

where 
thresh(i,j)  represents the intensity in pixel (i,j) in the initial thresholded image. 
fy_r(i,j) , fy_g(i,j) and fy_b(i,j) represent the red, green and blue intensities in the current 

original image, respectively.  

thresh_r  represents a calibrated threshold. 
 
If diff_img(i,j) thresh_normal≥  ( thresh_normal  =25), we detect the potential vehicle pixels 
based on the pixel intensity in the differenced image and the current original image, using 
equation (11): 

255  thresh1>=thresh_normal AND thresh3>threshold_origavg 
thresh(i,j)=         AND (fy_r(i,j)+ fy_g(i,j)+ fy_b(i,j))/3>threshold_orig

0      o.w.







 (11) 

where 
thresh(i,j)  represents the intensity in pixel (i,j) in the initial thresholded image. 
thresh1 represents a local average in a horizontal window centering at pixel (i,j) in the 

differenced image. 
thresh3  represents a local average in a horizontal window centering at pixel (i,j) in the 

current original image. 
fy_r(i,j) , fy_g(i,j) and fy_b(i,j) represent the red, green and blue intensities in the current 

original image, respectively.  
threshold_origavg and  threshold_orig represent the calibrated thresholds. 
 

This previous step in (11) assists by detecting the vehicles in the image, using a typical 
difference threshold of 25 units in pixel intensity. Noises (for example, shadows) as well as 
vehicles with lower contrast with the roadway are eliminated in the initial thresholded image. To 
better detect vehicles with lower contrast with the roadway, we use a lower threshold value. So, 
if _ ( , ) _diff img i j thresh low≥  ( thresh_low =15), find the vehicle pixels with low contrast to the 
roadway using equation (12): 

255  thresh1>=thresh_low AND abs(diff_img(i,j)-thresh3)<threshold_l
thresh_temp(i,j)=

0      o.w.




    (12)

     
where  
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thresh_temp(i,j)  represents the intensity in pixel (i,j) in the temporary thresholded image. 
thresh1 represents a local average in a horizontal window centering at pixel (i,j) in the 

differenced image. 
diff_img(i,j) represents the intensity in pixel (i,j) in the differenced image. 
thresh3  represents a local average in a horizontal window centering at pixel (i,j) in the 

current original image. 
threshold_l  represents a calibrated threshold. 
 

Because a lower threshold, thresh_low , is used and the intensity of the black vehicle is relatively 
low, the black vehicle pixels remain. 
 

We assume that vehicles run approximately in the middle of the lane, and the lane width 
is twice the vehicle width. Hence, the minimal distance in the lateral direction between any two 
vehicles running in parallel is approximately the width of a vehicle. In addition, we assume that 
the minimal car-following distance (for moving vehicles) is the length of the vehicle. Using these 
assumptions, we then screen out the non-vehicle pixels, for example, the shadows of the 
vehicles, based on the relative position of the vehicles on the roadway using equation (13): 
 

255  thresh_temp(i,j)=255 AND thresh(i,j) 0 AND thresh(i+a,j+b) 255 
thresh_tempf(i,j)= (a -car_width/2-2,car_width/2+2 b -car_length/2-3,car_length/2+3 )  

0      o.w.
[ ], [ ]

= ≠
 ∈ ∈

  

(13) 
where 

thresh_tempf(i,j) represents the intensity in pixel (i,j) after filtering in the temporary 
thresholded image.  

thresh_temp(i,j)  represents the intensity in pixel (i,j) in the temporary thresholded image. 
thresh(i,j)  represents the intensity in pixel (i,j) in the initial thresholded image. 
car_width and car_length represent the estimated width and length of the vehicle in the 

image. 
 

Then, we obtain the final thresholded image by making a union of the initial thresholded 
image obtained from equations (10) and (11) and the temporary thresholded image generated by 
equation (12), using equation (14): 

 
255        thresh(i,j)=255 OR thresh_tempf(i,j)=255            

thresh_final(i,j)=
0            o.w.





    (14) 

where 
thresh_final(i,j)  represents the intensity in pixel (i,j) in the final thresholded image.  
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thresh(i,j)  represents the intensity in pixel (i,j) in the initial thresholded image obtained from 
equations (10) and (11). 

thresh_tempf(i,j) represents the intensity in pixel (i,j) after filtering in the temporary 
thresholded image.  
 

Dilate the Thresholded Image 
 
The task of dilation, which was originally intended to create more contiguous blobs, was 
problematic in the previous work, because some of the vehicles very near each other were 
merged into a single blob. For this reason, we removed the step of dilating blobs in the image. 
 

Connected Component Labeling 
 
Because of different colors, shading, and textures on different parts of the vehicles, vehicles may 
be split into two or more blobs when differencing the images. After the connected component 
labeling, two blobs belonging to one vehicle should be merged. Because of different moving 
patterns between vehicles running in a single direction and turning vehicles, we perform the 
following steps: 
 
If abs(centroid_x(i)-centroid_x(j))<car_length and abs(centroid_y(i)-centroid_y(j))<thresh_s , 
where thresh_s is a calibrated threshold, merge the two blobs representing one vehicle running in 
a single direction using equation (15): 
 

min max

min max

(centroid_x(i)+centroid_x(j)-gap)/2       centroid_y(i)<(y +y )/2      
centroid_x(i)=

(centroid_x(i)+centroid_x(j)+gap)/2      centroid_y(i)>(y +y )/2 
centroid_y(i)=(centroid_y(i)+centroid_y





(j))/2
centroid_x(j)= 0
centroid_y(j)= 0

   

(15) 
where  

centroid_x(i) , centroid_y(i) , centroid_x(j)  and centroid_y(j) represent the x coordinate and y 
coordinate of the centroid of the blob i and blob j, respectively.  

gap represents the image number difference between two differenced images. In our test 
image, normal vehicles travel one pixel between two consecutive frames. Hence, 
equation (15) gives a reasonable estimate of the x coordinate of the merged blob. 

miny and maxy represent the estimated roadway boundaries.  
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A separate method is used for vehicles that are turning along the roadway. Specifically, if 
abs(centroid_x(i)-centroid_x(j))<car_length/2  and 
abs(centroid_y(i)-centroid_y(j)) [thresh_tl,thresh_th]∈ , where thresh_tl and thresh_th are 
calibrated thresholds, merge the two blobs representing one turning vehicle using equation (16): 

 

centroid_x(i)=(centroid_x(i)+centroid_x(j))/2 
centroid_y(i)=(centroid_y(i)+centroid_y(j))/2
centroid_x(j)= 0
centroid_y(j)= 0  

(16) 

 
where centroid_x(i) , centroid_y(i) , centroid_x(j)  and centroid_y(j) represent the x coordinate 
and y coordinate of the centroid of the blob i and blob j, respectively.  
 
 Compared to the minimal blob size (=50) in the previous work [26,41], a much smaller 
minimal blob size(=5) is used to screen out the non-vehicle blobs, considering there are some 
vehicles that appear as small white blobs in the image. Conversely, if the blob is even longer 
than a truck, it is not considered to be a vehicle. So, we can remove this non-vehicle blob if 
inequality (17) is satisfied: 
 

 max mincol (i)-col (i)>truck_length  (17)  
where 

maxcol (i)  and mincol (i)  represent the maximal and the minimal column number of blob i.  

truck_length represents the estimated length of the truck in the image. 

If the blob does not move considerably, it is considered as a stationary object. To do this, we 
have a threshold of movement in the long-term tracker that ensures that the blob moves sufficient 
pixels in order to be considered. So, we screen out the stationary object if inequality (18) is 
satisfied: 

 

abs(fh->feature[ii-1]->x - fh->feature[ii-15]->x)+ abs(fh->feature[ii-1]->y - 
fh->feature[ii-15]->y)<=longterm_car_mov

  (18) 

where 
fh->feature[ii-1]->x , fh->feature[ii-1]->y , fh->feature[ii-15]->x and 

fh->feature[ii-15]->y represent the x coordinate and y coordinate of the current blob in 
the (ii)th frame and (ii-14)th frame, respectively. 

longterm_car_mov  is a calibrated threshold, representing how many pixels normal vehicles 
traveled in 14 frames. 
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Experiments 

Experimental Design 
 

A set of images were collected in January 2011 from a camera mounted on a helicopter, 
traveling over Speedway Boulevard (an arterial roadway) in Tucson, AZ. A sample of 200 
frames was selected for testing using the new vehicle detection and tracking techniques. These 
images were first converted to Portable Pixel Map (PPM) format and then fed into TRAVIS. For 
this imagery, the scale of the image is set to 1.34 feet per pixel and is expected to be fairly 
constant across each individual image, and across the full set of images. 

 
In analyzing the imagery, there are two types of errors we can reduce: one is to reduce the 

number of existing vehicles in the imagery that are not tracked, which we refer to as a Type I 
error, and the other is to decrease the number of falsely tracked objects that are not vehicles, 
which is referred to a Type II error. The recall rate (RR) is related to a Type I error: reducing the 
number (or percentage) of vehicles that are not tracked. The precision rate (PR) is related to a 
Type II error: reducing the number (or percentage) of tracked objects that are not vehicles.  

#TPRR
#TP+#FN

=
                                                                  (19) 

#TPPR
#TP+#FP

=
                                                                   (20) 

where TP are the true positives, FP are the false positives, FN are the false negatives. Note that
 

TP is the number of tracked objects minus the false positives (FP). Also, (TP+FN) and FP are 
obtained by manually counting the vehicles in the images. 
 

Results 
 
Figures 28 and 29 illustrate an example of the tracked vehicles for the set of Speedway images 
using the enhanced algorithm and the previous algorithm [26,41], respectively. There is a color 
box drawn around the tracked objects. Compared to Figure 29, we can see that vehicles running 
in parallel, vehicles shown as small white blobs, red vehicles, and black vehicles are successfully 
tracked in the new algorithm, shown in Figure 28. 
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FIGURE 28 Tracked vehicles in 91st frame of Speedway images (Enhanced Algorithm) 
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FIGURE 29 Tracked vehicles in 91st frame of Speedway images (previous work [26,41]) 

 
Figure 30 shows the RR in the last frame of each cycle for the set of images from 

Speedway Boulevard. We can see that the RR fluctuates, as determined by the 

longterm_car_mov checking object tracking every 16 frames. The number of 16 frames in the 
examples here is chosen to be consistent with previous work [26], and matches well with a 
relatively low airborne platform speeds of 20-30 mph over an arterial and the frame rate of 30 
frames/second. Firstly, there are three vehicles waiting to turn at the intersection. They are 
tracked firstly and then dropped after the longterm_car_mov   is checked repeatedly, because 
these vehicles do not move sufficiently to pass this criterion. Secondly, there are some vehicles 
turning onto Speedway eastbound from the parking lot nearby. This slows down the vehicles on 
Speedway and makes those vehicles fail under the same criterion with longterm_car_mov . 
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FIGURE 30  RR in the last frame of each cycle (Speedway images). 

 
Figure 31 shows the PR in the last frame of each cycle for the set of images from 

Speedway Boulevard. We can see that the PR decreases overall. This is because the processed 
area in each image decreases, while the image number increases in this version of TRAVIS. In 
the image registration step, a single initial image is used as a reference image. All subsequent 
images are then registered to this initial image. If the overlap between image 1 and the 
subsequent image k is small, then only vehicles in this overlapping area are tracked. As the field 
of view changes (e.g., as the helicopter moves toward other areas along the roadway), the area of 
overlap with image 1 will be reduced, and fewer and fewer vehicles are tracked. 
 

We can also see that the PR fluctuates a little bit. This is mainly because some non-
vehicle objects are not persistently tracked because they do not move in a pattern consistent with 
other vehicles. We can exclude these short trajectories if their column is not close to either the 
column edge or the width of each image. In addition, there is one truck with different colors in 
the front and the back which is persistently tracked as two separate vehicles. Because of the car-
following pattern of the vehicles on the arterial, it is difficult to differentiate the long truck from 
two cars following each other.  
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FIGURE 31  PR in the last frame of each cycle (Speedway images). 

 
Table 3 shows the Type I and Type II errors of tracked vehicles (Speedway Images). We 

can see that the average Type I error and Type II error is 12.6% and 5.9%, respectively.  As 
mentioned previously, short trajectories can be excluded if their columns are not close to either 
the column edge or the width of each image. Hence, the performance of the vehicle detection and 
tracking algorithm appears to be reasonable. 
 
TABLE 3 Type I and Type II Errors of Tracked Vehicles (Speedway Images) 
Error Type I Error Type II Error 
Min 5.4% 1.8% 
Max 18.6% 11.1% 
Avg 12.6% 5.9% 

 

Conclusions 
 

Image processing methods provide a useful means of extracting traffic data from video 
image streams. In applications that require more exhaustive enumeration of vehicles and their 
positions, there remain challenges to vehicle identification and tracking. We have shown in this 
research that it is possible to detect and to track a high percentage of vehicles, while managing 
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the number of false detections (false alarms). This method requires a more careful treatment of 
the imagery, as the intensity of some vehicles in the imagery is very similar to that of the 
underlying roadway. Care is also needed to recognize sufficiently small vehicle blobs, small 
vehicle movements, and correlation of connected components to recognize and track vehicles 
without other false positives. In this paper, specific methods of dealing with these challenges 
have been presented, and these techniques have been incorporated into our image processing 
software, TRAVIS. 

 
 By improving these image processing techniques, we are now able to generate a 
sufficient sample of vehicle trajectories to begin estimation and calibration of traffic models with 
a minimum of manual data processing. At the same time, many others are working in similar 
research areas, with the hope of designing image processing tools that can respond to similar 
challenges. We remain optimistic that such tools can significantly improve the quality and 
quantity of microscopic traffic data that are available to the transportation community. 
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Dynamic Image Processing 
 
In the image registration step in the old version of TRAVIS, a single initial image is used as a 

reference image. All subsequent images are then registered to this initial image. If the overlap 
between image 1 and the subsequent image k is small, then only vehicles in this overlapping area 
are tracked. As the field of view changes (e.g., as the helicopter moves over other areas along the 
roadway), the area of overlap with image 1 will be reduced, and fewer and fewer vehicles are 
tracked. 

 
The goal of what we call “dynamic image processing” is to allow the tracking of vehicles in 

extended image sequences, even when the field of view changes. This allows more continuous 
tracking of vehicles and processing of their trajectories. 

Calculate Dynamic Image Processing Region 
 
The key idea of dynamic image processing is that the region of the image to be processed is 

moving in the same direction of the helicopter. There is one single reference frame, which is 
usually the first frame of the image sequences. Assuming the helicopter moves to the right (or 
left), and the reference frame is the first (or last) frame of the image sequence, the relative 
positions of the non-reference frames with respect to the reference frame can be categorized in 
one of six scenarios, as shown in Figure 32. In this figure, the image in the background is the 
reference frame, and the one in the front is the non-reference frame. In the case of the helicopter 
moving to the left (or right) and the reference frame being the first (or last) frame of the image 
sequence, the analysis is similar. 

 
Take scenario 1 as an example, as detailed in Figure 33. Here, the non-reference frame has 

shifted to the right, as the helicopter has moved along the roadway. In the old version of 
TRAVIS, the result would be that only the area of overlap of the two frames would be processed. 
In this case, however, we would like to add the region on the right, to allow vehicle tracking in 
that direction in the image.  
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Figure 32: Relative Positions of the Non-reference Frames with respect to 
the Reference Frame 
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Figure 33: Dynamic Image Processing Region Calculation 
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In such a case, the dynamic image processing region for the ith frame (the non-reference 
frame) is calculated as follows: 

Step 1: Transform each pixel coordinate from the reference frame coordinate system (x, y) to 
the non-reference frame coordinate system (x’, y’).  

Step 2: Calculate the minimal 'x coordinate for all pixels in the reference frame, '
minx . 

Step 3: Approximate x∆ using '
minx , with 

  
'
mincos cosx L L xθ θ∆ ≈ − +   (28) 

L denotes the width of the image. θ  is small, hence '
minx x∆ ≈ . 

Step 4: Calculate the processing region for the ith frame. 

  [ , +L]x x x∈ ∆ ∆       min max[ , ]y y y∈   (29) 

miny  and maxy are roadway boundaries, which are calculated in the road mask part. 

 

Obtain Actual Pixel Intensities 
 
The actual pixel intensities for the ith frame are obtained as follows: 

Step 1: Transform each pixel coordinate in the region of abcd , in which [ , +L]x x x∈ ∆ ∆ and 
[0, ]y nrows∈ , from the reference frame coordinate system (x, y) to the non-reference 

frame coordinate system (x’, y’).  

Step 2: Obtain the pixel intensities for the ith frame using (30):  

  

' '( , )
( , )

0
I x y

I x y


= 


     
' '[0, ] [0, ]

Otherwise
x L y D∈ ∈

   (30) 

L  and D denote the width and height of the image, respectively. 

For each pixel ( , )x y in the region of abcd  in the reference coordinate system, if its 

transformed coordinate ' '( , )x y is in the region of ' ' ' 'a b c d , the pixel intensity of ( , )x y  equals to 
the pixel intensity of ' '( , )x y in the non-reference frame; otherwise the pixel intensity is set to 0. 
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Differencing Images Dynamically 
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Figure 34: Principles of Differencing Images 

 
The procedure of differencing the (i+k)th image to the ith image, as shown in Figure 34, is as 

follows: 

Step 1: Assign 0 to pixel intensities for the reference frame i in the region of ' ' ' 'a b c d , in 
which min max[ ( ), ( )]x Col i k Col i k∈ + + and [0, ]y nrows∈ . 

min ( )Col i k+ and max ( )Col i k+ denotes the minimal and maximal x coordinate for the non-
reference frame, (i+k), respectively. nrows denotes the maximal y coordinate for the non-
reference frame, (i+k). 

Step 2: Overwrite the pixel intensities for the reference frame i in the region of ' 'a bcd by 
obtaining the actual pixel intensities for the reference frame i in the region of abcd , in 
which min max[ ( ), ( )]x Col i Col i∈  and [0, ]y nrows∈ . 

min ( )Col i and max ( )Col i denotes the minimal and maximal x coordinate for the reference 
frame i, respectively. 

Step 3: Obtain the actual pixel intensities for the non-reference frame, (i+k), in the region of 
' ' ' 'a b c d . 

Step 4: Difference the non-reference frame, (i+k), by the reference frame i in the region of 
' ' ' 'a b c d . 
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Results for Dynamic Image Processing 

Experimental Design 
 

The same set of 300 frames, used for the road mask, was used for testing using dynamic 
image processing, in addition to applying the road mask. Upper and lower boundaries of the 
columns in each image were estimated. The number of tracked vehicles was compared with 
respect to RMVDT, and the improvement in the number of tracked vehicles with dynamic image 
processing with respect to RMVDT was also calculated. 

Results 
 
Figure 35 shows the estimated upper and lower boundaries of the columns. We can see the 

estimated upper and lower boundaries of the columns in the images move steadily at the same 
velocity, in the same direction. In addition, the differences between the corresponding upper and 
lower boundaries are equal to the width of the input image (720 pixels). 

 
Figure 35: Estimated Upper and Lower Boundaries of Column 

 
Figures 36 and 37 show the output images of the 150th frame without and with dynamic 

image processing, respectively. We can see only the region which overlaps with the reference 
frame is processed without dynamic image processing (Figure 36). The whole image of the 
registered frame is processed with dynamic image processing (Figure 37). This is the 
fundamental improvement by using dynamic image processing. 
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Figure 36: Output Image of 150th Frame (Without Dynamic Image Processing) 

 
Figure 37: Output Image of 150th Frame (With Dynamic Image Processing) 

 
Figure 38 shows the number of tracked vehicles, with and without dynamic image 

processing. We can see that the number of tracked vehicles decreases without dynamic image 
processing, while it remains steady and only fluctuates slightly with dynamic image processing. 
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This difference is due to the difference in areas captured in the two methods, with and without 
dynamic image processing. 

 
Figure 38: Number of Tracked Vehicles with and without Dynamic Image Processing 
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Georeferencing 
 

One additional area of improvement with the TRAVIS software is the translation from image 
coordinates (pixels) to ground coordinates. The software is currently set up to use a single, 
image-dependent scale (e.g., feet per pixel) to convert pixel coordinates to ground coordinates. 
This image scaling has many shortcomings. Most prominently, the scale is constant across the 
entire image, so that any distortions in the image, such as radial distortion, camera not at nadir, 
etc., lead to incorrect estimates of vehicle positions. Secondly, the constant scale lacks a true 
reference point: while it is possible to estimate relative positions of objects, there is no absolute 
reference (or “ground truth”) to interpret vehicle positions. That is, we have no way of knowing, 
without additional information, the precise geographic position of any object in the image. 
 

Our goal in working toward a so-called georeferenced image was to be able to identify the 
absolute position of an object in the real world, through absolute ground coordinates 
(latitude/longitude). The conceptual approach was to register the airborne image, taken from a 
helicopter, with some additional georeferenced image. With access to such georeferenced 
imagery, the challenge then becomes to process both images to find common features, then to 
match these common features, and finally to match the images so that the ground coordinates in 
the georeferenced image could then be applied to the airborne image. 
 

Specifically, the concept follows these steps: 
1. Images are extracted from the airborne video. 
2. Pre-processing is conducted on these images to improve the efficiency of map matching; 

e.g., by reducing the resolution of the images. 
3. The first image in the video sequence is matched to the map, using some registration 

technique. 
4. The consecutive airborne images are then registered to each other, using the existing 

registration of the KLT feature tracker in TRAVIS [26,41]. 
5. Once the images are registered, one may infer the georeferenced (map) coordinates onto 

each airborne image. 
6. The road mask in TRAVIS may be applied to the airborne images, to limit the 

computational processing required for vehicle tracking. 
7. The remaining TRAVIS code is applied to detect and match vehicles across the airborne 

video image sequence. 
8. Vehicle trajectories in ground coordinates can then be derived directly from the 

coordinates of each image. Trajectories can also be displayed on a georeferenced map, 
such as Google Earth or other similar imagery. 

 
This system was implemented using the SIFT (Scale-invariant Feature Transform) algorithm 
[43]. However, the specific integration into TRAVIS was not completed in this project. 
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1.  

Sensor Fusion of Airborne with In-ground Sensor Data 
 

A major task of the project was to develop methods to fuse data from airborne sensors with 
ground data.  The initial focus was on freeway data. The traffic system is a highly dynamic and 
complex nonlinear system, even for a non-controlled freeway stretch.  Traditionally, the data 
used for freeway traffic state estimation are collected through limited number of ground sensors 
located at some specific positions along the freeway stretch.  This type of data has their intrinsic 
noise which would deteriorate the estimated results.  In this research we focus on the exploration 
of how to utilize the high accuracy picture data for a freeway stretch collected by a surveillance 
helicopter to enhance traffic state estimation. 

 
Figure 39: Illustration of State Estimation Procedure 

The Generic Traffic State Estimation Problem 
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System state estimation is a major branch in control area.  It refers to approximating a vector 
of system state that is hard to measure given some noisy measurements that are much less 
expensive to observe.  A system model, constituted of the system dynamics model and the 
measurement model, and an estimation algorithm are combined to estimate the system state and 
reduce noises using limited measurement data.  Regarding transportation systems, this includes 
three main components, a) an underlying traffic flow model and a measurement model, b) an 
applicable estimation algorithm, and c) sufficient measurement data, as is depicted in Figure 39  
The freeway traffic system is what we are interested in but cannot be observed, which along with 
error sources and sensor behavior are all in the black box on the upper side.  Traffic flow model 
and measurement models are imperfect abstracts of the real world system.  The estimation 
algorithm incorporates measurements, the output of sensors, and the system model to produce 
estimated system state. 

 
Traffic Modeling 

Traffic modeling for the state estimation includes modeling the evolution of traffic regarding 
time and space, and modeling the relationship between measurement variables and state 
variables.  The measurement model is more data-type dependent and varies greatly among 
different estimators.  On the other hand, modeling transportation system is itself a major topic in 
transportation area.  Regarding the levels of fidelity from low to high, traffic models can be 
categorized as macroscopic, mesoscopic and microscopic models.    

 
Macroscopic traffic models focus on the aggregated traffic state statistics, such as traffic flow 

and traffic density.  Since this requires the least level of details in measurement data, a great 
number of approaches estimating macro-freeway traffic state based on various macroscopic 
traffic flow models and diverse estimation algorithms have been developed with satisfactory 
performances.  However, as is known to all, in macroscopic level, computational efficiency is 
appreciated at the cost of detail information, which is not always enough to meet the need in 
dynamic assignment.   

 
In the other extreme, the microscopic traffic models emphasize on approximating individual 

vehicle behavior in the real world as detail as possible.  Obviously, given the highly dynamic 
nature of vehicle behavior as time evolves and the large number of vehicles in count, it is 
significantly computational expensive.  In fact, individual vehicle behavior may be too noisy to 
be useful, as it is influenced by such a great number of known or unknown factors.   

 
A good tradeoff between computational cost and level of fidelity can be realized by 

mesoscopic traffic models, which lies between the macroscopic level and the microscopic level.  
This type of models provides information more detailed than traffic state statistics but filters out 
microscopic behaviors like lane changing.  One can immediately notice that the so called 
mesoscopic level ranges very wide, so long as it between the macroscopic and microscopic 
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levels.  In this research we define the fidelity as the temporal-spatial relationship for each 
vehicle, but neglecting other behaviors beyond. 

 
Estimation Algorithms 

A bunch of estimation algorithms have been developed and applied to all engineering area.  
Kalman Filter (KF) is proved that can solve the state estimation problem optimally if the system 
is linear and noises are white and Gaussian. In traffic estimation area, extended Kalman filtering 
(EKF) and other variation of Kalman filtering are credited the most popularity for the nonlinear 
transportation system.  Particle filter (PF) is found to be helpful when the system is extremely 
nonlinear and the basic Gaussian assumption of system noises is corrupted.  However, a major 
drawback of these types of estimation algorithms is that constraints cannot be incorporated.  A 
more flexible one attracting increasing attention is the Moving Horizon Estimation (MHE).  
MHE solves the estimation problem as a minimum squared error optimization problem 
sequentially using a moving time horizon.  In this research, the particle filter and extended 
Kalman filter algorithms are selected to estimate the macro traffic state with a comparison, 
whereas the least squares optimization of estimation error method is applied to the mesoscopic 
vehicle trajectory estimation. 

 
Measurement Data 

Traditionally, measurement data for traffic flow estimation is collected from ground sensors.  
Although it is obvious that aggregated information of traffic flow is not enough for all intentions, 
research on estimation of more detailed vehicle trajectory is hindered by the type of data that 
sensors can provide.  As the technology develops, aerial data gathered from helicopters are 
available to provide more information of freeways, either of the same observation variables as 
the ground detectors but from independent source, or even about different features that ground 
sensors cannot measure.  By combining aerial data, it is hoped that the accuracy and efficiency of 
the traffic state estimator can be improved with significance.  Figure 40 illustrates the 
measurement data collected by remote sensors.  Filled black squares in the image represent 
captured vehicles.   
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Figure 40: Illustration of Remote Sensing 
 
This research explores the advantages of incorporating extra accurate data collected by 

helicopters.  This source of data is distinguished from traditional ground-sensor-based data in the 
following aspects.  (a) Accuracy.  Airborne data are extracted from images taken by helicopters, 
which would yield very high accuracy and almost zero noise.  (b) Mobility and flexibility. 
Unlike traditional ground sensors that are pre-located underground, one can decide whether to 
monitor a specific freeway stretch, which area is going to be monitored by the helicopter, and 
thus can have more flexibility on collecting data.  (c) Adjustable helicopter speed.  The relative 
speed of the surveillance helicopter to the ground traffic flow impacts which platoon of vehicles 
are tracked, and would further have an influence on the estimated traffic states.  In fact this 
results a related problem of optimizing surveillance helicopter speed, which we would discuss 
shortly later, but for the rest part of this report we simply assume some default tracking time for 
each vehicle.  The most significant disadvantage for using remote sensors is that it is more 
expensive than the once and for all installation fee of ground sensors.  But since high accuracy 
estimation is needed in many occasions and the extra cost is acceptable, this research still has its 
merits. 

Freeway Traffic State Estimation Problem 
 

In this research we focus on the freeway traffic state estimation problem, regarding both 
macroscopic and mesoscopic levels, using data collected by both ground sensors and remote 
sensors.  In macroscopic level the efforts aim at enhancing the estimation of real-time traffic 
state statistics and prediction of the future state by utilizing the high accuracy remote sensing 
data, while in mesoscopic level smoothing historical and predicting future vehicle trajectories are 
the objectives. 
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Figure 41: A Freeway System  

 
The evolution of a freeway traffic system is continuous in time and space, but researchers 

found it very helpful to discretize it into segments and into discrete time.  Figure 41 shows a 
freeway stretch that can be considered as an interactive chain consisting of N segments.  Each 
segment has at most one on-ramp and/or one off-ramp.  Limited ground detectors are installed in 
the stretch in order to measure observable features represented by observation variables Y1(t), 
where t is the time index referring to a time step in the discretized time space.  Measurement data 
collected by remote sensors are denoted as Y2(t).  These measurements are essentially 
determined by the state features of the segments, such as the traffic flow q, traffic density r, the 
mean-space speed v, onramp flow r and offramp flow s, represented by the stochastic state 
variables X1(t).  The macroscopic traffic model is to explore the dynamic relationship and 
evolution of the discrete-time macro-state variables characterizing the segments over time and 
space, for example, traffic flow, traffic density and mean-space speed.  Based on this model and 
a measurement model, the macroscopic estimator then can apply the particle filter algorithm and 
is expected to estimate traffic states using measurement data with high accuracy.  

 
Matching the vehicles in a series of images would yield partial trajectories or sparse points 

along their trajectories.  Optimally filling the gaps between these measurements is the objective 
of our mesoscopic estimator.  In this case, only the time dimension is discretized, denoted by 
time index k.  Note that the length of time steps could be different between macroscopic and 
mesoscopic levels. 
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Figure 42: Vehicle Trajectories 

 
Figure 42 shows an illustration of vehicle trajectories travelling through a single-lane multi-

entrance multi-exits freeway.  Each trajectory starts at the beginning of the stretch or at the 
position of onramps, and ends at the end of the stretch or offramps.  Initially, the congestion is 
appearing at around 600 meters away from the origin.  As time elapse, the congestion area is 
enlarged to be between 400m and 600m.  Obviously, if one can estimate each of these 
trajectories satisfyingly, the whole picture of the traffic condition would be easily obtained.  In 
this research, each of the trajectories will be estimated separately.  A single trajectory is made up 
of sequential time-space points representing the location of the vehicle at any given time, or 
when the vehicle gets to the position for any given location.  For each single vehicle, its 
movement is highly influenced by the traffic condition of a specific segment it is travelling 
through.  But its detailed behavior is determined by many uncontrollable factors such as the 
driver’s psychological activity.  Thus the mesoscopic model is going to explore its temporal-
spatial relationship given macroscopic traffic conditions and ignore the too detailed behaviors by 
treating them as the system noise.  Complete estimated state information about the macroscopic 
traffic state in the entire domain of time and space, including density, speed and traffic flow at 
any location at any time within the domain under investigation are assumed to be available but 
may not be accurate; in fact these are the results of the macroscopic estimation.  Based on the 
mesoscopic traffic state model and a measurement model, the mesoscopic estimator can 
approximate the vehicle trajectories given macro-state data and image measurements at some 
sparse points. 
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The above two are the core problems of this research, but there are also other related sub-
problems or possible advanced problems.  Helicopter speed optimization, Origin-Destination 
(OD) flow estimation and ramp metering control rate optimization are the major ones.   

 
The rest of this chapter is organized as follows.  First we present a short literature review, 

followed by discussions on the scope, framework and the methodology of this research.  Detailed 
results on the mesoscopic vehicle trajectory estimator is provided afterwards with experimental 
results and discussions. 

Literature Review 
 

Wang and Papageorgiou [44] proposed and joint estimation approach for macroscopic traffic 
states, boundary variables and critical model parameters at the same time.  Traffic density and 
mean speed in each segment are defined as states, while traffic flow and space-mean speed in 
sensor-located segments are defined as measurements.  METANET model and EKF approach 
are adopted to realize the real-time estimation.  This is empirically tested to be satisfactory given 
the consideration that only ground-sensor based data are available.  Hegyi et al. [45] show that 
based on METANET second-order traffic flow model, the Unscented KF (UKF) is slightly or 
equal in the performance to EKF. The performance of joint filter is better than that of the dual 
filter. Fewer detectors result in larger state estimation errors but have little effect on the 
parameter estimation error.   

 
Particle filter (PF) is a relatively new method to replace EKF, but may require much more 

computation.  Mihaylova and Boel [46]  develop the particle filter application in traffic state 
estimation. They investigate the performance of PF and Unscented KF and conclude that PF 
performs better than UKF.  Sun, Munoz and Horowitz [47] develop the mixture Kalman filter for 
ramp metering control based on first order traffic model and obtain the average mean percentage 
error of approximately 10%.  Ensemble KF (EnKF) may be a good substitute of EKF among the 
all considering both the performance and efficiency. Work et al. [48] use it in highway traffic 
estimation using GPS enabled mobile devices.     

 
Obviously, although all of these researches are trying to get better estimate of system states, 

no attention is paid to exploring incorporating the remote sensing data.  For mesoscopic vehicle 
trajectory estimation and prediction, there is rarely any literature focusing on this topic, let alone 
the investigation of how to take advantages of aerial data.  

Research Methodology 

Logic Chart for the Framework 
 
Figure 43 shows the framework and scope of this research.  Both macroscopic and 

mesoscopic levels of traffic state are considered, where within each level both an estimator and a 
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predictor are built.  The final output should be estimated and predicted macroscopic traffic state 
and estimated and predicted mesoscopic vehicle trajectories.  The helicopter speed serves as an 
input for the remote sensors.  The output of both levels can be further used as inputs to related 
problems such OD flow estimation and ramp metering control problems. 

 

 
Figure 43: Logic Chart for the Framework 

 

Typical methods for filtering a multi-sensor system 
 

Assuming the data are synchronously collected, three methods can be applied to the multi-
sensor system, namely, parallel filter, sequential filter and data compression [49]. The following 
provides a general introduction of how to solve the multi-sensor problem, but in our research 
only the parallel filter method is adopted. 
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Let 1kx + denote the system state with covariance 1kP +  and 1,k iy + denote the measurement taken 

at time k+1 from sensor i, i=1 if ground data and 2 aerial data, and 1,k iv + is the white Gaussian 

noise with covariance matrix 1,k iR + conditionally independent of the other detector’s covariance 

matrix. 
The measurement vector then become 

1 1,1 1,2[ ]k k ky y y+ + += ,  

and the covariance matrix is 

1,1
1

1,2

0
0
k

k
k

R
R

R
+

+
+

 
=  

   
a) Parallel Filter: Parallel filter is to process measurements in multi-filters at the same time. 

2

1| 1 1| 1 1, 1, 1| 1
1

ˆ ˆ ˆ( ( ))k k k k k i k i i k k
i

x x K y h x+ + + + + + + +
=

= + −∑  

The Kalman Gain matrices 1,k iK + are calculated according to specific KF algorithm. 

b) Sequential Filter: The sequential filter is to update filter sequentially with data blocks from 
difference sources 

1| 1, 1| 1, 1 1, 1, 1| 1, 1ˆ ˆ ˆ( ( ))k k i k k i k i k i i k k ix x K y h x+ + + + − + + + + −= + −  

c) Data Compression: The data compression method is to compress similar data first and then 
use them to update the filter for once at each time interval. 

On the Macroscopic Level 
 
Models 
 

The cell transmission model [50]  represents the system evolution of freeway traffic over 
time and space using easy-to-solve difference equations.  The model has four degrees of 
freedom, specifically, the free flow speed, the maximum flow, the jam density, and the wave 
speed.  METANET [51] is another widely acknowledged macroscopic traffic flow model 
relating the current traffic density and speed state to the state at the previous time step with a 
closed form of formulation.  Both are empirically tested to be satisfactory. 
 
Filtering Algorithms 

Presently most of the related researches are conducted based on some variations of the 
Kalman Filter Algorithm.  In this part a general idea of Kalman Filter is introduced.   This is the 
basis for any variation of KF, such as the widely applied EKF.   Consider the system 

 
( 1) [ ( ), ( ), ( )]

( , ) :
( ) [ ( ), ( )]

x k f x k u k k
x y

y k h x k k
x

h
+ =

=∑
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where ( )x k is the unknown state vector with covariance matrix P( )k ; ( )u k is the known input 
vector; ( )y k is the measured output vector; [ ( ), ( ), ( )]f x k u k kx  and [ ( ), ( )]h x k kh are system 
dynamic function and observation function respectively; ( ), ( )k kξη  are the independent white 
Gaussian noise vectors with known covariance matrix ( ), ( )Q k R k .   
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Prediction (Time Update) 

(1) Project the state ahead 

(2) Project the error covariance ahead 

 )()()|(ˆ)()|1(ˆ kukGkkxkFkkx +=+

QFkkFPkkP T +=+ )|()|1(

 

Correction (Measureme  

(1) Compute the Kalman 

(2) Update estimate with me  
 

(3) Update Error Covariance 

  (()|1( += T HPHkkPK

(  ()|1(ˆ)1|1(ˆ yKkkxkkx ++=++

)()1|1( KHIkkP −=++
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Figure 44: Illustration of Kalman Filter Procedure [52] 
 

The original KF is designed for linear system.  If [ ( ), ( ), ( )]f x k u k kx  and [ ( ), ( )]h x k kh are 
linear functions, the system become 

 
( 1) ( ) ( ) ( ) ( ) ( )

( , ) :
( ) ( ) ( ) ( )

x k F k x k G k u k k
x y

y k H k x k k
x

η
+ = + +

= +∑
, 

 
In this case, KF is proved to be able to get the best estimate of ( )x k  using the recursive 

procedure shown in Figure 41.  On the other hand, if [ ( ), ( ), ( )]f x k u k kx  and [ ( ), ( )]g x k kη  are 
nonlinear, EKF, UKF or other alternative methods should be adopted. 

On the Mesoscopic Level 
 

In this part of the research we show that with the help of high accuracy data collected from 
helicopters we are able to estimate the trajectory of a vehicle traveling on a freeway superior to 
an estimator without airborne data.  We optimize locally along the vehicle trajectory using a 
least-squares model.  By locally we mean the optimization of trajectory estimation problem is 
decomposed into several same problems but with shorter time horizon.  The optimization time 
horizon is defined as the time length between any two points where the vehicle is captured by the 
remote sensor.  The LS model is applied every time when the vehicle is captured by the 
helicopter, and finally we obtain the estimated full trajectory by linking up all these segments of 
trajectories.   

Other Related Problems 
 
Optimizing helicopter speed 
 

Suppose the helicopter flies in the same direction as the ground vehicle flow does.  Which 
platoons of vehicles are tracked is influenced by the relative velocity of the monitoring helicopter 
regarding to the speeds of ground traffic.  Naturally, we would ask what the optimal helicopter 
speed is regarding to obtaining the most amount of “helpful” information of ground traffic flow.  
By “helpful” we mean that the new data would provide some unknown information rather than 
just repeat the information can be obtained from ground sensors or our traffic flow model.  
Another important objective in investigating the optimal speed is to ensure the observability of 
system state.  This is a big issue influences state estimation performance. 

 
Real time Origin-Destination (OD) flow estimation 
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Real time OD flow is the critical input for real time traffic control systems.  Unfortunately, 
this problem is usually a highly underestimated problem.  Consider a general case of n pair of 
entrances and exits.  The number of OD flow state variables would be n2 at each time step, while 
the observations obtained from ground sensors cannot be enough to ensure observability of 
system state.  New data source from remote sensors may help solving this problem. 
 

 
 

Figure 45: Logic Chart of Ramp Metering 
 

Ramp metering control rate 
 

The freeway was designed to provide unlimited transportation service to drivers.  However, 
as the number of vehicles increases, recurrent and non-recurrent congestions are appearing on 
freeways more and more frequently.  By introducing the philosophy of traffic lights to freeways, 
appropriate ramp metering control can lead to substantial amelioration of congestions through a 
trade-off between traffic demand satisfaction and freeway utilization efficiency under flow 
capacity constraint.  It can also have impact on drivers’ route choice behavior in the long term as 
drivers expecting a long queue at the on-ramp may choose available alternative routes.  Ramp 
metering control allows only one vehicle to enter the freeway mainstream each time when the 
traffic light is green.  The time intervals for the light phases stand for certain metering decision 
limiting the on-ramp stream to the mainstream.  It can be shown that ramp metering control can 
improve the exiting flow in congestions, leading to reductions in OD total travel time.  
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As is shown in Figure 45, the problem of metering rate decision is divided into two problems, 

i.e. control policy and traffic state estimation; indeed, the OD flow estimation is the critical input 
for the controller.  

Freeway Traffic State Estimation Model 

Mesoscopic Vehicle Trajectory Modeling 
 

In mesoscopic level defined in our research we focus on the temporal-spatial relationship for 
each individual vehicle while all microscopic behaviors like lane changing are neglected.  From 
this view one only cares about at each time step where the vehicle is located in the freeway 
stretch.  Consider a single vehicle traveling on a freeway, its movement follows the theory of 
classical mechanics.  Theoretically, once one defines a time and space origin, the specific spatial 
position of the vehicle can be determined by an integration of its instantaneous velocity over 
traveled time.   
 

0

( ) ( )
k

x k v h dh= ∫
                  

                  
where k refers to a continuous time point, x is the position measured from the start point and v is 
the instantaneous speed.  However, measuring instantaneous velocity alone the whole trajectory 
is unrealistic, especially when we are interested in the movements of a large number of vehicles; 
a more sensible way is to collect data only on a limited number of points in the time-space 
domain and estimate the rest part of the trajectory.  First we discretize the time space into time 
steps, each of which has a length T.  Let k denote the time step index.  The discrete vehicle 
model can be described as  
 

                                                     
( 1) ( ) ( )*
( 1) ( )

x k x k v k T
v k v k

+ = +
+ =

                                                   (31)   

               
This model literally states that at time step k+1, the vehicle is located ( )*v k T meters ahead 

of the position where it was at time step k, while the speed at time k+1 is the same as the 
previous time step.  Let xx and vξ be the normally distributed noise vector related to the position 

model and the speed model, and ( )x kx and ( )v kξ be their elements.  Adding the stochastic noise 
term to the model, we obtain a model that is referred as system dynamics (Equation 32).  This 
model states that model in Equation 31 is not a perfect model so we need to use the noise term to 
describe the difference between the system state described in Equation 31 and the real world 
system state.   
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( 1) ( ) ( )* ( )
( 1) ( ) ( )

x

v

x k x k v k T k
v k v k k

x

x

+ = + +

+ = +
                                       (32)  

                
It is assumed that the vehicle is captured by the camera in helicopter at some fixed time 

points.  These time points naturally separate the whole trajectory into pieces.  Each piece can be 
considered independent since we know exactly where the vehicle is at the start point of each 
piece.  It is the same as estimating a new trajectory from these captured points.  Each of the 
optimization horizon ends when the vehicle gets tracked again. Note that the instantaneous speed 
may be available when the vehicle gets tracked.   Equation 33 describes that at the start time and 
the end time the vehicle is tracked by the helicopter for twice.   
 

Note these set of measurement model does not include noise terms since these measurements 
are obtained from remote sensor.  We highly trust the accuracy of remote sensors, and the noises 
would be small enough to be neglected compared to the significance of noises in ground sensors. 
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Figure 46: The Single Vehicle Trajectory Estimation Problem  
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Assumption1: The instantaneous speed at time k of a vehicle follows a normal distribution 

with a mean of the average speed of the segment it is travelling through at the time k and certain 
variance. (Figure 46) 
 

The freeway is segmented into cells, each of which is approximately as long as the average 
travel length of vehicles in one time step T at the average velocity (assumed as the speed limit) 
V.  Within each segment cell the freeway is assumed to be homogeneous, i.e., density and 
velocity do not change much.  The speed of the vehicle highly depends on the average speed on 
the segment it is travelling through, especially when congestion occurs.  Therefore, this 
assumption is reasonable.   

Let vη  be the noise of speed measurements, which is in fact the difference between real 
instantaneous speed of the vehicle and the estimated mean speed of the segment where the 
vehicle is located, and ( )v kη  be its element at time step k.  The measurement model for relating 
macroscopic data to vehicle state variables is as follows. 

 
                                                              ( )   ( ) + ( )v

vy k v k kη=                                              (34) 
 

It is assumed that all macroscopic data are available but with a much longer time step than 
that is used in estimating trajectories.  For example we may use T= 0.2 second for trajectory 
estimation but use TS=15 seconds in macroscopic traffic flow estimation.  Since the mean speed 
of segments are used as the measurement of instantaneous speed for individual vehicles, a much 
larger TS implies that the measurement for speed is piecewise linear and the change points in 
measurement data are sparse. In experimental analysis we would see that even given this limited 
amount of information one can still get a good estimation of the vehicle trajectory. Equations 33 
and 34 together constitute the measurement model. 

 
Assumption2: The vehicle trajectory estimation problem can be separated into several 

independent same-type sub-problems.  
 
This assumption is adopted to facilitate the estimation, but may lead to loss of historical 

information.  Still in Figure 46, dark dots on the trajectory represent where the vehicle is tracked.   
In this figure we have four dots, forming three sub-problems.  Those sub-problems are solved 
consecutively and by linking up the estimated trajectory fragments, one obtains the whole 
estimated trajectory. 
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Least Squares Approach 
 

A least squares model is built up to optimize the estimation of trajectory given available 
measurements.  Let 1

xQ− , 1
vQ− and 1

xR− be the inverse of the covariance matrices for xx , vξ and vη . 

Denote the start time of one time horizon as 0k and the end time of that horizon as Nk .                                      

           

                                      (35) 

 
Equation 35 minimizes the estimation error, which is the summation of system error and the 

measurement error.  First two constraints are system dynamics from eqn.2.  The next five 
constraints are measurement equations from equations 33 and 34.  The last two constraints are 
constructed to preclude absurd results, which cannot be realized in traditional filtering algorithms 
such as Kalman filter.  Note that in equation 35 the start instantaneous speed is assumed known, 
but in the experimental analysis, results from equation 35 is compared with results from a 
modified model which do not have the information of exact start speed.  

Experimental Analysis 
 

In this section we present the experimental results.  TS is set to be 15s and T is set to be 0.2s.  
The captured points along the trajectory separate the whole trajectory into eight pieces.  The true 
vehicle trajectory data is simulated in VISSIM.  The estimation algorithm is realized in 
MATLAB and the least-squares model in IBM-ILOG OPL software. 
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Figure 47. Vehicle Trajectory Estimation without Airborne Data 
 

The vehicle enters the freeway main stretch at time 380s from the initial point of that stretch, 
and gets off at 495s around 2750m from the initial point.  Figure 47 shows the estimated 
trajectory without any information from the remote sensor, which means all measurements come 
from the mean speed of macroscopic traffic statistics data.  It is obvious that from time t=380s to 
time t=420s there is a large gap between estimated trajectory and the true trajectory.  This is 
because of the large deviation of vehicle speed from the mean speed of freeway segments it 
travelled through.  The rest part of the estimated trajectory is not bad.  This may imply that the 
vehicle speed is much closer to the mean speed of freeway cells.  But it may also results from the 
cancellation effect of a negative deviation from true position at the previous time step and a 
positive deviation from true instantaneous speed, or vice versa. 

 
Figures 48 and 49 show how much improvement we can get through the least-squares 

optimization model.  In Figure 48 we assume that the initial instantaneous speed in each local 
optimization horizon is unknown.  It is clear that before time 420s the estimated trajectory gets 
much closer around the true trajectory.  However, at time t = 410s an unexpected gap rises.  By 
checking data we believe that this is due a large difference between vehicle’s instantaneous 
speed and the mean speed of the corresponding segment, and the fact that the limited amount of 
measurement data is not enough to ensure observability of system state.  It may also result from 
some aberrant microscopic behaviors.  Similar case happens at time 460s, where the gap between 
estimated trajectory and the true trajectory is even enlarged.  These problems imply that we may 
need additional measurements to enhance the estimation.   
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Figure 48: Vehicle Trajectory Estimation Using Airborne Data with Unknown Initial Speed 
 

 
 

Figure 49: Vehicle Trajectory Estimation Using Airborne Data with known Initial Speed 
 

In Figure 49 it is further assumed that the initial and end instantaneous speed is known for 
each local optimization problem.  It depicts that the estimated trajectory almost overlaps the true 
trajectory.   There are still areas where the estimated line is deviated from the true trajectory.  
Unfortunately, these parts are hard to eliminate because of the limited measurements and 
unknown influence of microscopic behaviors.  This is another example of the observability 
problem.  Generally, this model can perform well in most cases. 
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Discussion 
This mesoscopic vehicle trajectory estimator shows satisfactory performance in the 

experimental analysis.  It takes advantages of airborne data collected by monitoring helicopters 
and adopts a least-squares optimization approach.  There are several things about this estimator 
that deserve further discussions.  First, this experimental analysis was conducted only on a single 
case which does not have the statistically persuasive evidence.  Further research is going to be 
carried out on a set of vehicles.  Second, future research may emphasize on incorporating a cell 
transmission model even in the mesoscopic level.  Third, the observability problem leads us to 
think how many measurements are enough.  This may be a part of the helicopter speed 
optimization problem. 
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Observation Logistics for Airborne Vehicles 
 

A separate research initiative within the scope of this program dealt with logistics of the 
airborne vehicles (AV), such as helicopters, airplanes or unmanned aerial vehicles (UAVs), 
operating cameras to remotely monitor traffic. In particular, logistics problems were defined for 
two cases: (1) when the fleet of AVs has the capacity to monitor all required locations to be 
observed and the objective is to minimize the cost of monitoring the locations; and, (2) when the 
fleet has more points to monitor than it is capable of monitoring, in which case the objective 
considered was to maximize the number of observation locations. 

 
These problems were formulated as optimization models. Their solution complexity was 

evaluated and heuristic solution approaches were studied.  A simple case study was addressed to 
demonstrate the framework for solving the logistics problems. A prototypal version of the 
software, named SIM-AIR, was implemented to simulate and visualize the routing/scheduling of 
a fleet of AVs for the case study network. Each of these activities is described in this section. 

 
The general problem we focused on can be stated as follows: 

We are given a fleet of AVs to monitor a set of observation points during a preferred (or pre-
specified) time window. Each AV can operate for a given time horizon, say [0, Tmax]. Once an 
AV gets near an observation point it monitors it for p time units and then it flies to observe 
another observation point. The problem is to define a schedule for each AV in the fleet such that 
all the observation points are observed respecting certain observation time’s constraints. 

 
We considered three different scenarios: 

- Static (Off-line) scenario: in this scenario we assume all the observation points with the 
associated time windows are given a priori, that is, they are known in advance to be critical 
congestion-prone locations with time durations for monitoring them. 

- Dynamic (On-line) scenario: in this scenario we assume such information is not known in 
advance but during the operating time of the AVs, congested locations that require 
monitoring become known dynamically; 

- Mixed scenario: in this scenario we assume there is a predefined set of  observation points  
with the associated time windows that are known a priori, but also during AVs’ operations, 
some additional observation locations become critical and require monitoring.  

So far we have addressed only the first scenario described above. Two optimization problems 
are defined (Problem 1 and Problem 2) below for the first scenario (off-line). 
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Optimization Problems, Complexities and Mathematical Models  
 
To better address the problem, we need to introduce some definitions and notation. We 

assume that each observation point is represented by a location in the space and an associated 
time window during which the observation needs to be conducted. Hence we can represent an 
observation location as the triple (Oi, [ai, bi], pi ) where:  

- Oi represents a physical link segment, say location i, in the network; 

- [ai, bi] denotes the given earliest and latest times during which the location Oi can be 
monitored; 

- pi represents the required duration for monitoring location Oi. 
 
We define an observation schedule of length k for each AV to be the sequence {(ti1, Oi1), 

(ti2,Oi2), (ti3, Oi3),…, (tik, Oik)} with ti1≤ ti2≤ ti3≤…≤ tik., where ti is the time epoch (decision 
variable) for start of monitoring location Oi.  For example, Figure 1 depicts a simple scenario 
where there are 6 observation locations to be observed (the red segments in the map). An 
observation schedule defines for each AV a plan on how to monitor the observation locations.  

 

 
Figure 50: An Observation Schedule for Monitoring 6 Locations Corresponding to 

6 Link Segments in the Network 
 
Figure 50 represents the plan corresponding to the observation schedule {(t1, O1), (t2,O2), 

(t3, O3), ( t4, O4 ), (t5, O5), (t6, O6)}. Obviously, such an observation schedule to be ‘effective’ 
should satisfy some intuitive characteristics. First, given an observation schedule {(ti1, Oi1), 

(t1, O1)

(t2, O2)

(t3, O3)

(t4, O4)

(t5, O5)

(t6, O6)
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(ti2,Oi2), (ti3, Oi3),…, (tik, Oik)}, if an AV monitors two different observation locations, say Oi 
and Oj, then the associated monitoring activities carried out by the AV, (that is, observe location 
Oi and then go from Oi to Oj and then observe Oj) should be feasible as far as the given time 
windows are concerned. This is ensured by relation (1) described below. Let ti  and tj be two 
subsequent time observations (tj ≥ ti ) carried out by the same AV on locations Oi and Oj, 
respectively. We define these observations to be admissible if: 

 ti + pi  + dij(ti + pi) ≤ tj (36) 

where dij(ti + pi) is the time needed by the AV to go from location Oi  to location Oj, departing 
from Oi  at time ti + pi. In the sequel, for clarity of exposition, we consider such a distance to be 
independent from the departure time at point Oi, that is dij(t)= dij for each t.  

 

We define a feasible observation schedule of length k for an AV i in the fleet to be an 
observation schedule {(ti1, Oi1), (ti2,Oi2), (ti3, Oi3),…, (tik, Oik)} such that the observations are 
admissible and total operating time of each AV is not greater than the given operating time Tmax, 
that is: 

 tik+ pik ≤ Tmax  for each i (37) 

Finally, if time window [ai, bi] for the location Oi has to be respected, the observation 
schedule has to satisfy the following time window constraint: 

 ai  ≤  ti ≤ bi (38) 
   

In this context, our aim now is to consider admissible and feasible observation schedules for 
each AV such that a given objective criterion is optimized and possible additional constraints are 
considered. In particular the following problems (and related variants) are being considered: 

Problem 1: Given a fleet of m AVs and a set of observation locations with associated time 
windows, define a set of admissible and feasible observation schedules, one for each AV to 
monitor all the given observation locations  such that the total service time of all AVs is 
minimized. 

Problem 2: Given a fleet of m AVs and a set of observation locations with associated time 
windows, define a set of admissible and feasible observation schedules one for each AV such that 
the total number of locations monitored is maximized. 

For Problem 2, there is an implicit assumption that the fleet of m AVs cannot observe all the 
given locations. 

In this report, we address both these problems. For each of them we first analyze the simpler 
case when the fleet is composed of a single AV and we then generalize to the case with m AVs. 
We also analyze some variants of the problems by considering different objective functions and 
additional constraints. For each problem considered we study its computational complexity and 
provide a corresponding mathematical formulation. 
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Modeling Problem 1 which Minimizes Total Observation Cost 
 
Problem 1 can be addressed by defining a complete oriented graph G=(V,E), where the set of 

vertices corresponds to the observation locations and the length associated with each arc is the 
travel distance dij needed by an AV of the fleet to go from location  Oi to the location Oj. We 
added a dummy vertex v0 =0 representing a depot at an airfield, that is a vertex where the AVs 
start and end their tour. The dummy vertex is connected with each vertex of the graph. We will 
refer to this graph in the sequel as the Observation Graph.  

 
In case of a single vehicle (AV) then finding a solution for Problem 1 means to look for a 

Hamiltonian tour on G that satisfies the time windows at each vertex; that is a simple tour 
starting and ending at the dummy vertex, and visiting each vertex during its time window exactly 
once.  

 
Consider for example the graph in Figure 51 corresponding to the Observation Graph with 

six observation locations. With each vertex i the time window [ai, bi] is associated denoting the 
earliest and the latest time during which the vertex can be visited.  

 
Figure 51: A Complete Graph with Six Vertices plus a Dummy Vertex Representing the 

Observation Graph for Six Given Observation Locations and an AV Depot 

The dummy vertex has associated a time window [0, Tmax] where Tmax  is the operating time 
of the vehicles (AVs). Cost dij  is associated with each arc (vi, vj); zero cost is associated with the 
arcs incident to the dummy vertex. A Hamiltonian tour T={0,1,4,2,5,3,6,0} is shown in Figure 
52.  
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Figure 52: A Feasible Hamiltonian Tour T={0,1,4,2,5,3,6,0} 

 
Let us assume the service (monitoring ) time pi at each vertex i is equal to 1; then by 

denoting with ti the time vertex i  is visited, the sequence  t0=t1=1, t4=7, t2 =15, t5 =26, t3 =32, 
t6=43  is associated with T. Note that, this defines the observation sequence (t1 , O1) - (t4 , O4) - 
(t2 , O2  ) - (t5 , O5) - (t3 , O3) -(t6 , O6) as a solution of the corresponding Problem 1.  

 

 This sequence is such that: 

• if j is visited after i then such a visit cannot be carried out before the visit at vertex i is 
over and j is reached, that is:  

ti + pi + dij ≤ tj        

• the visit time ti at each vertex must respect the time window of the vertex: 
 ai  ≤  ti ≤ bi        

 
If the vehicle arrives at vi before the time window is open then is has to wait. For example, 

there is a waiting time at vertex 2 in the Hamiltonian tour T of Figure 3 equal to w2 = 7.Note that, 
since the time window constraint is imposed also for the dummy vertex, the resulting tour 
satisfies the feasibility constraint (37). 

 
Each Hamiltonian tour, whose associated sequence respects the time constraints (36), (37) 

and (38), is a feasible Hamiltonian tour. Each feasible Hamiltonian tour on the complete graph 
G=(V,E) is an admissible and feasible observation schedule for Problem 1 that satisfies the time 
windows constraints. 
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Associated with each Hamiltonian tour is a routing cost corresponding to the sum of the cost 
of each arc in the tour. The cost of the tour T in Figure 52 is equal to c(T) = 5+2+10+5+10 = 32.  

 
We can also associate a total service time to each Hamiltonian tour that is the difference 

between the ending and the starting time of the tour. Service time of tour T of our example is s(T) 
=  t6 – t1 = 43 – 1 = 42. Obviously, the service time of a tour is the sum of the routing cost c(T), 
the service times at vertices (i.e.,  pi for each i∈ V) and the waiting times wi at each vertex.  

 
Finding a feasible Hamiltonian tour on a graph G whose associated routing cost is minimum 

is the well-known Traveling Salesman Problem with Time Windows (TSPTW). The problem is 
NP-Complete and there is an extended literature that addresses and proposes different solution 
techniques. 

 
When we have more than one AV in the available fleet to monitor a set of locations, then the 

problem becomes the Vehicle Routing Problem with Time Windows (VRPTW), where we look 
for a feasible set of tours (one for each AV), starting and ending at a depot, that together cover 
all the vertices of the graph. The objective is to minimize the total distance traveled (routing 
cost) by all the AVs in the fleet.  

 
Assume there are m = 2 AVs to visit the vertices. Then the two admissible and feasible 

observations schedules on the observation graph of Figure 52, are shown in Figure 53.  
 

 
Figure 53: A feasible solution to the 2-AV Vehicle Routing Problem with Time 
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There are two tours one for each AV. The first tour is T1 ={0,1,3,6}, with the associated 
sequence t1 = 1, t3 = 25, t6 = 35, routing cost c(T1) = 15, and total service time s(T1) = 34. The 
second tour T2 has the associated sequence t4 = 5, t2 = 15, t5 = 25, routing cost c(T2) = 12, and 
total service time s(T2) = 20. The two tours define the two observation sequences:   (t1 , O1) - (t3 

, O3) - (t6 , O6 ) for the first AV and   (t2, O2) - (t4 , O4) -(t5 , O5)  for the second AV. Note that 
we can obtain for each set of tours the following costs: 

• the total routing cost that is equal to c(T1) + c(T2)=27; 

• the total service time that is equal to s(T1) + s(T2)=64; 

• the maximum service time that is equal to max{s(T1) + s(T2)}=34. 
 
The VRPTW is NP-complete. We can think of other variants of the problem, some of which 

are given below: 

Problem 1b (Lateness): Suppose to have soft time windows, that is, if an AV arrives at the 
time window [ai, bi] at a time ti ≥ bi (that is, it arrives late) a penalty term can be included in the 
objective function. Then one could be interested in finding a Hamiltonian tour such that total 
lateness and service time are minimized.  Another objective could be to minimize the maximum 
lateness. 

Problem 1c (Earliness): Suppose the AV could arrive early at the observation point, that is ti 

≤ ai and therefore it waits before resuming monitoring operations. One may then be interested in 
finding a Hamiltonian tour such that the total idle time and service is minimized. 

Problem 1d (Fleet Size): When the problem does not have a single Hamiltonian tour as a 
feasible solution, one may be interested in looking for a fleet of AVs of minimum size such that 
all the locations are observed exactly once, satisfying the time windows constraints (38) and the 
Tmax constraints (37). 

For each of the above problems, we develop now a corresponding optimization formulation. 

Formulations for AV Routing to Minimize Total Observation Cost 
 
Let binary variables xij associated with each arc of the observation graph G assume value 

equal to 1 if the corresponding arc (i,j) is selected and 0 otherwise. Define a set of variables ti ≥ 0 
associated with each vertex of the graph, to denote the time epoch vertex i is visited. Finally, let 
variable s denote the total service time of a tour. 

 
We first provide the mathematical formulations of Problem 1 by considering the case of a 

single AV (with the corresponding variants Problem 1b and Problem 1c), the provided 
formulations are easily generalized to the case of a multiple fleet of m AVs. We then provide the 
formulation for the last variant of Problem 1, that is, Problem 1d. 
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Formulations for Problems 1, 1b, and 1c for the single AV case 
 
The mathematical formulation for Problem 1 in case of a single AV is the following.  

Problem 1 – single AV  

min 𝑠  (2.1) 

� 𝑥𝑖𝑖 = 1
𝑗𝑗𝑗

 ∀ 𝑖 ∈ 𝑉 (2.2) 

� 𝑥𝑗𝑗 = 1
𝑗𝑗𝑗

 ∀ 𝑖 ∈ 𝑉 (2.3) 

𝑡𝑖 + 𝑝𝑖 + 𝑑𝑖𝑖 ≤ 𝑡𝑗 + 𝐵�1 − 𝑥𝑖𝑖� ∀ (𝑖, 𝑗) ∈ 𝐸, 𝑗 ≠ 0 (2.4) 

𝑡𝑖 ≥ 𝑎𝑖 ∀ 𝑖 ∈ 𝑉 (2.5) 

𝑡𝑖 ≤ 𝑏𝑖 ∀ 𝑖 ∈ 𝑉 (2.6) 

𝑡0 = 0   

𝑡𝑖 + 𝑝𝑖 ≤ 𝑠 ∀ 𝑖 ∈ 𝑉 (2.7) 

𝑥𝑖𝑖 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐸 (2.8) 

𝑡𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑉 (2.9) 

where the objective function (2.1), together with constraints (2.7), minimizes the service time of 
the tour. Constraints (2.2) and (2.3) require the tour to visit each vertex exactly once. Constraints 
(2.4)-(2.5)-(2.6) are the time-window constraints. In particular, constraints (2.4) requires that if 
the arc (i,j) is used (i.e., xij=1), then the time of visit at vertex j must satisfy rule (36), and B is a 
large constant value. Constraints (2.5) and (2.6) model the time windows constraints. Binary 
constraints on variables xij are imposed by (2.8) and non negativity of variables ti by (2.9). 
 

To formulate the variant of the problem corresponding to soft time windows that allow 
lateness, a new set of non negative variables  li ≥ 0 defining the lateness at vertex i  is needed. 
Let C be a penalty cost for a unit time of lateness, then following is the formulation of Problem 
1b: 
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Problem 1b (Lateness) – single AV  

min 𝑠 + 𝐶� 𝑙𝑖
𝑖𝑖𝑖

   (2.1b) 

(2.2)-(2.3)-(2.4)-(2.5)-(2.7)-(2.8)-(2.9)   

𝑡𝑖 ≤ 𝑏𝑖 + 𝑙𝑖 ∀ 𝑖 ∈ 𝑉 (2.6b) 

𝑙𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑉 (2.10) 

where the new objective function (2.1b) takes into account the lateness penalty and constraints 
(2.6) are replaced by the new constraints (2.6b) that allow lateness. 
 

To formulate the variant of the problem with soft time windows allowing for earliness, a set 
of non negative variables wi ≥ 0 defining the waiting time at vertex i is needed. Let C be a 
penalty cost for unit time of waiting, then following is the formulation of Problem 1c:  

 
Problem 1c (Earliness) – single AV  

min 𝑠 + 𝐶� 𝑤𝑖
𝑖𝑖𝑖

   (2.1c) 

(2.2)-(2.3)-(2.4)-(2.6)-(2.7)-(2.8)-(2.9)   

𝑡𝑖 ≥ 𝑎𝑖 − 𝑤𝑖 ∀ 𝑖 ∈ 𝑉 (2.5b) 

𝑤𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑉 (2.11) 

where the new objective function (2.1c) takes into account the penalty for the waiting time and 
constraints (2.5c) allow for early arrival at an observation point. 
 

Mathematical Formulation of Problem 1d 
 
Let us now consider Problem 1d, that is the case where one is interested in minimizing the 

number of AVs in the fleet. Let us define the set M={1,2, …, n}, where n=|V|is the maximum  
possible number of AVs that may be needed. Then the problem formulates as: 

 
Problem 1d – Minimizing the Total Number of AVs  

 

min ��𝑥𝑜𝑜𝑘

𝑗∈𝑉𝑘∈𝑀

  (2.12) 

��𝑥𝑖𝑖𝑘 = 1
𝑗∈𝑉𝑘∈𝑀

 ∀ 𝑖 ∈ 𝑉\{0} (2.13) 
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��𝑥𝑗𝑗𝑘 = 1
𝑗∈𝑉𝑘∈𝑀

 ∀ 𝑖 ∈ 𝑉\{0} (2.14) 

��𝑥𝑗0𝑘 − ��𝑥0𝑗𝑘 = 0
𝑗∈𝑉𝑘∈𝑀𝑗∈𝑉𝑘∈𝑀

  (2.15) 

𝑡𝑖𝑘 + 𝑝𝑖 + 𝑑𝑖𝑖 ≤ 𝑡𝑗𝑘 + 𝐵�1 − 𝑥𝑖𝑖𝑘 � ∀ (𝑖, 𝑗) ∈ 𝐸, 𝑗 ≠ 0, 
∀ 𝑘 ∈ 𝑀 

(2.16) 

𝑡𝑖𝑘 ≥ 𝑎𝑖 − 𝐵(1 −�𝑥𝑖𝑖𝑘 )
𝑗∈𝑉

 ∀ 𝑖 ∈ 𝑉,∀ 𝑘 ∈ 𝑀 (2.17) 

𝑡𝑖𝑘 ≤ 𝑏𝑖 − 𝐵(1 −�𝑥𝑖𝑖𝑘 )
𝑗∈𝑉

 ∀ 𝑖 ∈ 𝑉,∀ 𝑘 ∈ 𝑀 (2.18) 

𝑡0𝑘 = 0 ∀ 𝑘 ∈ 𝑀 (2.19) 

𝑡𝑖𝑘 + 𝑝𝑖 ≤ 𝑇𝑚𝑚𝑚 ∀ 𝑖 ∈ 𝑉,∀ 𝑘 ∈ 𝑀 (2.20) 

𝑥𝑖𝑖𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐸,∀ 𝑘 ∈ 𝑀 (2.21) 

𝑡𝑖𝑘 ≥ 0 ∀ 𝑖 ∈ 𝑉,∀ 𝑘 ∈ 𝑀 (2.22) 
 
Objective function (2.12) requires the minimization of the number of AVs that start their 

tours at the dummy vertex, that is, the total number of AVs that would be needed out of the 
maximum n AVs. Moreover, constraints (2.7) has been replaced by constraints (2.20) that force 
the service time of each AV to be less than or equal to its maximum operating time Tmax. 

 
Obviously, also for this variant we could consider the case of soft time windows using the 

same modifications as previously described. 

Modeling Problem 2 which Maximizes Number of Locations Observed 
 
Now we address the following problem: 

Given a fleet of m AVs and a set of observation locations with associated time windows, 
define a set of feasible and admissible observation schedules one for each AV such that the total 
number of observations locations monitored is maximized  

Consider the observation graph described in the previous section. The number of vertices 
visited by the tour corresponds to the total number of observation locations that is monitored. 
Hence, the longer the tour (in terms of number of vertices visited) the more the observations 
made by the AV.  Therefore the objective function for Problem 2 is the maximization of the 
length of the route (in terms of vertices visited). However, not all the tours define an observation 
schedule for Problem 2. Indeed, they need to satisfy the admissibility, feasibility and time 
windows constraints (36), (37) and (38) for an observation sequence. 
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Hence, Problem 2, in case of a single AV, can be solved by solving the Constrained Longest 

Tour (CLT) on the observation graph G where the added constraints ensure (36), (37) and (38) to 
be satisfied. 

 
If there are m>1 AVs in the fleet then Problem 2 becomes the Constrained Longest Multi-

Tour (CLMT) on the graph, where the problem consists of finding m disjoint simple tours 
covering together all the vertices of the graph and satisfying additional time-window constraints. 
Both the problems are NP-complete, since they are special cases of the Hamiltonian tour 
problem and the Vehicle Routing Problem, respectively. Next section provides the corresponding 
optimization formulations. 

Formulations for AV Routing to Maximize Number of Observations 
 
Formulation for Problem 2 for the single AV case 

 
Let G=(V,E) be a complete oriented graph, with costs dij associated with each arc (i,j). Let 

binary variables xij associated with each arc of the graph be equal to 1 if the corresponding arc is 
selected and 0 otherwise, and let variables ti associated with each vertex of the graph denote the 
observation epoch for the vertex.  

 
The mathematical formulation of the corresponding Constrained Longest Path Problem on G 

is the following.  

max � 𝑥𝑖𝑖
(𝑖,𝑗)∈𝐸

  (2.23) 

� 𝑥0𝑗 = 1
𝑗𝑗𝑗

  (2.24) 

� 𝑥𝑗0 = 1
𝑗𝑗𝑗

  (2.25) 

� 𝑥𝑖𝑖 ≤ 1
𝑗𝑗𝑗

 ∀ 𝑖 ∈ 𝑉\{0} (2.26) 

� 𝑥𝑗𝑗 ≤ 1
𝑗𝑗𝑗

 ∀ 𝑖 ∈ 𝑉\{0} (2.27) 

� 𝑥𝑖𝑖 −  � 𝑥𝑗𝑗 = 0
𝑗𝑗𝑗𝑗𝑗𝑗

 ∀ 𝑖 ∈ 𝑉\{0} (2.28) 

𝑡𝑖 + 𝑝𝑖 + 𝑑𝑖𝑖 ≤ 𝑡𝑗 + 𝐵�1 − 𝑥𝑖𝑖� ∀ (𝑖, 𝑗) ∈ 𝐸, 𝑗 ≠ 0 (2.29) 

𝑡𝑖 ≥ 𝑎𝑖 ∀ 𝑖 ∈ 𝑉 (2.30) 
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𝑡𝑖 ≤ 𝑏𝑖 ∀ 𝑖 ∈ 𝑉 (2.31) 

𝑡0 = 0   

𝑡𝑖 + 𝑝𝑖 ≤ 𝑇𝑚𝑚𝑚 ∀ 𝑖 ∈ 𝑉 (2.32) 

𝑥𝑖𝑖 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐸 (2.33) 

𝑡𝑖 ≥ 0 ∀ 𝑖 ∈ 𝑉 (2.34) 

 

Objective function (2.23) maximizes the number of selected arcs and therefore the length of 
the tour. Constraints (2.24) and (2.25) impose the tour to start and end at the dummy vertex 0 of 
the graph. Each node cannot be visited more than once is ensured by constraints (2.26)-(2.27)-
(2.28). The admissibility, feasibility and time windows constraints are ensured by constraints 
(2.29) – (2.32). Binary and non negativity constraints are represented by (2.33) and (2.34). 

 
Formulation of Problem 2 for the multiple AVs case 
 
Let G=(V,E) be an oriented graph, with costs dij associated with each arc (i,j). Let 

k∈M={1,2,…,m} be the index set of AVs to be routed. Let binary variables 𝑥𝑖𝑖𝑘  associated with 
each arc of the graph and each vehicle k be equal to 1 if the corresponding arc is traversed by 
vehicle k and 0 otherwise, and let the variables 𝑡𝑖𝑘 associated with each vertex i of the graph and 
each vehicle k denote the observation epoch of the vertex by vehicle k. 

 

The mathematical formulation of the Multi–Vehicle Constrained Longest Tour on G is the 
following. 

max � 𝑥𝑖𝑖𝑘
(𝑖,𝑗)∈𝐸

  (2.35) 

� 𝑥𝑖𝑖𝑘 = 1
𝑘∈𝑀

 ∀ (𝑖, 𝑗) ∈ 𝐸 (2.36) 

� � 𝑥0𝑗𝑘 = 1
𝑗𝑗𝑗𝑘∈𝑀

  (2.37) 

� � 𝑥𝑗0𝑘 = 1
𝑗𝑗𝑗𝑘∈𝑀

  (2.38) 

� � 𝑥𝑖𝑖𝑘 ≤ 1
𝑗𝑗𝑗𝑘∈𝑀

 ∀ 𝑖 ∈ 𝑉\{0} (2.38) 

� � 𝑥𝑗𝑗𝑘 ≤ 1
𝑗𝑗𝑗𝑘∈𝑀

 ∀ 𝑖 ∈ 𝑉\{0} (2.40) 
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� � 𝑥𝑖𝑖𝑘 −� � 𝑥𝑗𝑗𝑘 = 0
𝑗𝑗𝑗ℎ∈𝑀𝑗𝑗𝑗𝑘∈𝑀

 ∀ 𝑖 ∈ 𝑉\{0} (2.41) 

𝑡𝑖𝑘 + 𝑝𝑖 + 𝑑𝑖𝑖 ≤ 𝑡𝑗𝑘 + 𝐵�1 − 𝑥𝑖𝑖𝑘 � ∀ (𝑖, 𝑗) ∈ 𝐸, 𝑗 ≠ 0,∀ 𝑘 ∈ 𝑀 (2.42) 

𝑡𝑖𝑘 ≥ 𝑎𝑖 ∀ 𝑖 ∈ 𝑉,∀ 𝑘 ∈ 𝑀 (2.43) 

𝑡𝑖𝑘 ≤ 𝑏𝑖 ∀ 𝑖 ∈ 𝑉,∀ 𝑘 ∈ 𝑀 (2.44) 

𝑡0𝑘 = 0 ∀ 𝑘 ∈ 𝑀 (2.45) 

𝑡𝑖𝑘 + 𝑝𝑖 ≤ 𝑇𝑚𝑚𝑚 ∀ 𝑖 ∈ 𝑉,∀ 𝑘 ∈ 𝑀 (2.46) 

𝑥𝑖𝑖𝑘 ∈ {0,1} ∀ (𝑖, 𝑗) ∈ 𝐸,∀ 𝑘 ∈ 𝑀 (2.47) 

𝑡𝑖𝑘 ≥ 0 ∀ 𝑖 ∈ 𝑉,∀ 𝑘 ∈ 𝑀 (2.48) 

Simulation and Visualization of Routing/Scheduling AVs 

Test Scenario 
 
In order to test a method we needed to develop test problems. One test problem was 

developed from a simulation of traffic loaded on a real network. The research team was fortunate 
to have a small network preliminarily developed by team member Yi-Chang Chiu and simulated 
using DynusT [30], a traffic simulation software developed at the University of Arizona. The 
network was for traffic flow for Beaverton, Oregon. (The network data needed to be cleaned a 
little since the visualization showed some redundant links and also unconnected components. 
The initial network contained 748 nodes and 1682 links; the cleaned network had 654 nodes and 
1421 links). DynusT includes a software code NEXTA (Network EXplorer for Traffic Analysis) 
which is graphical user interface to facilitate the preparation, post-processing, and analysis of 
traffic simulation results. Using NEXTA it is possible to change the settings of a simulation run 
(traffic lights phases, characteristics of the network, OD matrices etc.).  Figure 54 shows the 
Beaverton network visualized on Google Earth. 

 
After the traffic simulation was run (recall that we are currently addressing the off-line 

scheduling and routing), traffic congestion times and locations were obtained, where congestion 
was defined for each given link segment a, the traffic density exceeded a given density of 
ρa vehicles/mile and speed (mph) was less than some given function of ρa that described link 
segment capacity. These defined the required observation segments, both in space and time. By 
decreasing ρa we had more observation segments; increasing ρa decreased this number. In 
summary we performed these steps for our off-line scheduling/routing. 

1. Simulate the traffic behavior on the given traffic network. 

2. Analyze the output data at the end of the simulated period. 
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3. Select the “congested” links according to the speed and density thresholds. 

4. Schedule the AVs to monitor the congested links. 

5. Visualize the network on Google Earth. 

6. Simulate and visualize the monitoring activity of each AV on Google Earth. 

We refer to the system for scheduling, routing, and visualization of AVs (steps 4-6) as SIM-
AIR. 

 
Figure 54: The Beaverton network visualized on Google Earth. 

We ran DynusT on the network considering a time horizon of 24 periods and 107 OD pairs. 
The input files network.dat and xy.dat describe the characteristics of the network. The output 
files OUTLinkDent.dat, OUTLinkSpeedALL.dat and OUTLinkVeh.dat were the output files of 
DynusT used by SIM-AIR. The description and contents of the two input files are given in 
Appendices 1 and 3. 

 

 Description of SIM-AIR 
 

SIM-AIR reads the problem scenario which includes the network data, the output of a traffic 
simulator and the corresponding observation segments. The scheduling code then develops the 
routes and schedules of the AVs in the fleet. SIM-AIR then visualizes the routes and simulates 
the monitoring activity of each AV on Google Earth.  
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For simulating real-time or on-line scheduling and routing (a future task), a vehicle simulator 
and SIM-AIR would need to be integrated to perform the following steps.  In this case, traffic 
control decisions need to be made based on the data gathered by the AVs:  

Simulation of on-line monitoring and controlling using AVs: 

1. Simulate the traffic behavior of given network for every ∆ minutes. 

2. Analyze the output data every ∆ minutes. 

3. Select current “congested” links according to speed and density thresholds. 

4. Schedule the AVs to monitor the congested links. 

5. Monitor the link and , if necessary, control traffic (through traffic lights phasing, VMS, 
etc.) 

6. Repeat steps 1-5 until end of simulation period for the test scenario. 

7. Simulate and visualize the monitoring activity of each AV on Google Earth. 
 

Routing and Scheduling Algorithms  
 
As discussed, the optimization problems for routing and scheduling are computationally 

hard, but there are heuristics available and new heuristics can be developed. For the purpose of 
demonstrating the “proof of concept” we simply designed a heuristic that selects the link 
segments on a “first-identified-first observed” manner, that is, as each observation segment is 
identified in time it is put on list of points that are observed on a first-in first out basis. In this 
demonstration a fleet of only one AV was assumed. In the future, heuristic codes will be 
developed for other cases (multiple AVs, and for variants of Problem 1 and Problem 2). 

 

Simulating and Visualizing AV Movement on Google Earth  
 
The route was visualized on Google earth. When the AV (e.g., helicopter) moves from one 

link segment to another, the trajectory is red when the helicopter is performing a monitoring 
activity, while the trajectory is blue when the AV is deadheading to the next link segment to be 
observed.  

 
Figures 55 and 56 show images from the SIM-AIR simulation. Figure 55 shows the 

helicopter while it is performing a monitoring activity on a congested link. Figure 56 shows the 
helicopter flying to the beginning of the next link that needs to be monitored. 
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Figure 55: Simulation of the AV (helicopter) while it is performing a monitoring 

activity on a congested link. 
 

Figure 56: Simulation of the AV (helicopter) while it is flying to the next congested link. 
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Potential Future Applications 

The project has also sought to solve practical problems for the industry, in the sense that 
these products in turn could feed future applications. This has been achieved through feedback 
from the Technical Advisory Panel for the project, which was sought both through a kickoff 
meeting with the panel (held in April 2010) and in soliciting feedback from panel members 
(electronically) on the value of airborne data products (conducted in summer 2011). The 
feedback from the technical advisory group was that the airborne traffic data would have value, 
inasmuch as we are able to capture extended sequences (5-10 min) over reasonable lengths of 
roadway (at least 0.5-mile) in the imagery field of view. From the view of our technical advisory 
panel, such imagery allows for more sufficient traffic data to be of use for: (1) microscopic 
traffic simulation modeling; (2) for understanding patterns of traffic congestion over larger 
geographic areas where aircraft may be able to travel quickly; and (3) estimating traffic states 
(levels of congestion) on specific facilities, when integrated with other ground-collected traffic 
data. 
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